以下是相关的代码和文档,想知道默认cross_val_score
没有明确指定score
,输出数组是指精度,AUC还是其他一些指标?
将Python 2.7与miniconda解释器一起使用。
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
>>> from sklearn.datasets import load_iris
>>> from sklearn.cross_validation import cross_val_score
>>> from sklearn.tree import DecisionTreeClassifier
>>> clf = DecisionTreeClassifier(random_state=0)
>>> iris = load_iris()
>>> cross_val_score(clf, iris.data, iris.target, cv=10)
...
...
array([ 1. , 0.93..., 0.86..., 0.93..., 0.93...,
0.93..., 0.93..., 1. , 0.93..., 1. ])
的问候, 林
答案 0 :(得分:3)
来自user guide:
默认情况下,在每次CV迭代时计算的分数是分数 估算器的方法。可以通过使用来改变这一点 评分参数:
来自DecisionTreeClassifier documentation:
返回给定测试数据和标签的平均准确度。在 多标签分类,这是一个子集精度 苛刻的指标,因为您需要每个标签集的每个样本 正确预测。
不要被"平均准确性混淆,"它只是常规的方式来计算准确性。点击source的链接:
from .metrics import accuracy_score
return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
metrics.accuracy_score
def accuracy_score(y_true, y_pred, normalize=True, sample_weight=None):
...
# Compute accuracy for each possible representation
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
if y_type.startswith('multilabel'):
differing_labels = count_nonzero(y_true - y_pred, axis=1)
score = differing_labels == 0
else:
score = y_true == y_pred
return _weighted_sum(score, sample_weight, normalize)
def _weighted_sum(sample_score, sample_weight, normalize=False):
if normalize:
return np.average(sample_score, weights=sample_weight)
elif sample_weight is not None:
return np.dot(sample_score, sample_weight)
else:
return sample_score.sum()
注意:对于accuracy_score
normalize参数默认为True
,因此它只返回布尔numpy数组的np.average
,因此它只是正确预测的平均数。
答案 1 :(得分:1)
如果未给出评分参数,cross_val_score
将默认使用您正在使用的估算工具的.score
方法。对于DecisionTreeClassifier
,它的平均准确度(如下面的文档字符串所示):
In [11]: DecisionTreeClassifier.score?
Signature: DecisionTreeClassifier.score(self, X, y, sample_weight=None)
Docstring:
Returns the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.
Parameters
----------
X : array-like, shape = (n_samples, n_features)
Test samples.
y : array-like, shape = (n_samples) or (n_samples, n_outputs)
True labels for X.
sample_weight : array-like, shape = [n_samples], optional
Sample weights.
Returns
-------
score : float
Mean accuracy of self.predict(X) wrt. y.