我想计算分割大矩阵后遇到的等矩阵的数量。
mat1 = np.zeros((4, 8))
split4x4 = np.split(mat1, 4)
现在我想知道split4x4中有多少个相等的矩阵,但collections.Counter(split4x4)
会抛出错误。是否有内置的方式在numpy这样做?
答案 0 :(得分:1)
这可以使用numpy_indexed包以完全向量化的方式完成(免责声明:我是其作者):
import numpy_indexed as npi
unique_rows, row_counts = npi.count(mat1)
这应该比使用collections.Counter快得多。
答案 1 :(得分:1)
也许最简单的方法是使用np.unique
并展平拆分数组,将它们作为元组进行比较:
import numpy as np
# Generate some sample data:
a = np.random.uniform(size=(8,3))
# With repetition:
a = np.r_[a,a]
# Split a in 4 arrays
s = np.asarray(np.split(a, 4))
s = [tuple(e.flatten()) for e in s]
np.unique(s, return_counts=True)
备注:版本1.9.0中return_counts
新版本的np.unique
参数。
另一个纯粹的numpy解决方案受到that post
的启发# Generate some sample data:
In: a = np.random.uniform(size=(8,3))
# With some repetition
In: a = r_[a,a]
In: a.shape
Out: (16,3)
# Split a in 4 arrays
In: s = np.asarray(np.split(a, 4))
In: print s
Out: [[[ 0.78284847 0.28883662 0.53369866]
[ 0.48249722 0.02922249 0.0355066 ]
[ 0.05346797 0.35640319 0.91879326]
[ 0.1645498 0.15131476 0.1717498 ]]
[[ 0.98696629 0.8102581 0.84696276]
[ 0.12612661 0.45144896 0.34802173]
[ 0.33667377 0.79371788 0.81511075]
[ 0.81892789 0.41917167 0.81450135]]
[[ 0.78284847 0.28883662 0.53369866]
[ 0.48249722 0.02922249 0.0355066 ]
[ 0.05346797 0.35640319 0.91879326]
[ 0.1645498 0.15131476 0.1717498 ]]
[[ 0.98696629 0.8102581 0.84696276]
[ 0.12612661 0.45144896 0.34802173]
[ 0.33667377 0.79371788 0.81511075]
[ 0.81892789 0.41917167 0.81450135]]]
In: s.shape
Out: (4, 4, 3)
# Flatten the array:
In: s = asarray([e.flatten() for e in s])
In: s.shape
Out: (4, 12)
# Sort the rows using lexsort:
In: idx = np.lexsort(s.T)
In: s_sorted = s[idx]
# Create a mask to get unique rows
In: row_mask = np.append([True],np.any(np.diff(s_sorted,axis=0),1))
# Get unique rows:
In: out = s_sorted[row_mask]
# and count:
In: for e in out:
count = (e == s).all(axis=1).sum()
print e.reshape(4,3), count
Out:[[ 0.78284847 0.28883662 0.53369866]
[ 0.48249722 0.02922249 0.0355066 ]
[ 0.05346797 0.35640319 0.91879326]
[ 0.1645498 0.15131476 0.1717498 ]] 2
[[ 0.98696629 0.8102581 0.84696276]
[ 0.12612661 0.45144896 0.34802173]
[ 0.33667377 0.79371788 0.81511075]
[ 0.81892789 0.41917167 0.81450135]] 2