我是pandas的新手,并试图找出如何同时向pandas添加多个列。任何帮助在这里表示赞赏。理想情况下,我想一步到位而不是多次重复步骤......
import pandas as pd
df = {'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
df[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs',3] #thought this would work here...
答案 0 :(得分:84)
我原本希望你的语法也能正常工作。出现问题是因为当您使用列列表语法(df[[new1, new2]] = ...
)创建新列时,pandas要求右侧是DataFrame(请注意,如果DataFrame的列不重要,它实际上并不重要与您正在创建的列具有相同的名称。
您的语法可以很好地为现有列分配标量值,并且pandas也很乐意使用单列语法(df[new1] = ...
)将标量值分配给新列。因此,解决方案是将其转换为多个单列分配,或者为右侧创建合适的DataFrame。
以下是将工作的几种方法:
import pandas as pd
import numpy as np
df = pd.DataFrame({
'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]
})
然后是以下之一:
(1)从技术上讲,这是三个步骤,但看起来只有一步:
df['column_new_1'], df['column_new_2'], df['column_new_3'] = [np.nan, 'dogs', 3]
(2)DataFrame
方便地扩展单行以匹配索引,因此您可以这样做:
df[['column_new_1', 'column_new_2', 'column_new_3']] = pd.DataFrame([[np.nan, 'dogs', 3]], index=df.index)
(3)如果您使用新列创建临时数据框,然后在以后与原始数据框合并,这将很有效:
df = pd.concat(
[
df,
pd.DataFrame(
[[np.nan, 'dogs', 3]],
index=df.index,
columns=['column_new_1', 'column_new_2', 'column_new_3']
)
], axis=1
)
(4)与之前类似,但使用join
代替concat
(可能效率较低):
df = df.join(pd.DataFrame(
[[np.nan, 'dogs', 3]],
index=df.index,
columns=['column_new_1', 'column_new_2', 'column_new_3']
))
(5)这是一个更自然的"创建新数据框的方法比前两个,但新列将按字母顺序排序(至少before Python 3.6 or 3.7):
df = df.join(pd.DataFrame(
{
'column_new_1': np.nan,
'column_new_2': 'dogs',
'column_new_3': 3
}, index=df.index
))
(6)我喜欢@ zero的答案很多,但与前一个一样,新列将始终按字母顺序排序,至少在早期版本的Python中:
df = df.assign(column_new_1=np.nan, column_new_2='dogs', column_new_3=3)
(7)这很有趣(基于https://stackoverflow.com/a/44951376/3830997),但我不知道什么时候值得这么麻烦:
new_cols = ['column_new_1', 'column_new_2', 'column_new_3']
new_vals = [np.nan, 'dogs', 3]
df = df.reindex(columns=df.columns.tolist() + new_cols) # add empty cols
df[new_cols] = new_vals # multi-column assignment works for existing cols
(8)最后很难打败这个:
df['column_new_1'] = np.nan
df['column_new_2'] = 'dogs'
df['column_new_3'] = 3
注意:其他答案中已涵盖了其中许多选项:Add multiple columns to DataFrame and set them equal to an existing column,Is it possible to add several columns at once to a pandas DataFrame?,Pandas: Add multiple empty columns to DataFrame
答案 1 :(得分:23)
您可以将assign
与列名和值的字典一起使用。
In [1069]: df.assign(**{'col_new_1': np.nan, 'col2_new_2': 'dogs', 'col3_new_3': 3})
Out[1069]:
col_1 col_2 col2_new_2 col3_new_3 col_new_1
0 0 4 dogs 3 NaN
1 1 5 dogs 3 NaN
2 2 6 dogs 3 NaN
3 3 7 dogs 3 NaN
答案 2 :(得分:3)
使用concat:
In [128]: df
Out[128]:
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
In [129]: pd.concat([df, pd.DataFrame(columns = [ 'column_new_1', 'column_new_2','column_new_3'])])
Out[129]:
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0.0 4.0 NaN NaN NaN
1 1.0 5.0 NaN NaN NaN
2 2.0 6.0 NaN NaN NaN
3 3.0 7.0 NaN NaN NaN
不太确定您想要对[np.nan, 'dogs',3]
做些什么。也许现在将它们设置为默认值?
In [142]: df1 = pd.concat([df, pd.DataFrame(columns = [ 'column_new_1', 'column_new_2','column_new_3'])])
In [143]: df1[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs', 3]
In [144]: df1
Out[144]:
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0.0 4.0 NaN dogs 3
1 1.0 5.0 NaN dogs 3
2 2.0 6.0 NaN dogs 3
3 3.0 7.0 NaN dogs 3
答案 3 :(得分:3)
使用列表理解,pd.DataFrame
和pd.concat
pd.concat(
[
df,
pd.DataFrame(
[[np.nan, 'dogs', 3] for _ in range(df.shape[0])],
df.index, ['column_new_1', 'column_new_2','column_new_3']
)
], axis=1)
答案 4 :(得分:0)
只想在@Matthias Fripp的回答中指出选项2
(2)我不一定希望DataFrame以这种方式工作,但确实如此
df [[' column_new_1',' column_new_2',' column_new_3']] = pd.DataFrame([[np.nan,' dogs& #39;,3]],index = df.index)
已经记录在熊猫'自己的文件 http://pandas.pydata.org/pandas-docs/stable/indexing.html#basics
您可以将列列表传递给[]以按顺序选择列。 如果DataFrame中未包含列,则会引发异常。 也可以这种方式设置多列。 您可能会发现这对将变换(就地)应用于列的子集非常有用。
答案 5 :(得分:0)
df = pd.DataFrame(columns = ['column1','column2'])
答案 6 :(得分:0)
如果添加许多具有相同值的缺失列(a,b,c,....),这里为0,我这样做:
new_cols = ["a", "b", "c" ]
df[new_cols] = pd.DataFrame([[0] * len(new_cols)], index=df.index)
它基于已接受答案的第二个变体。
答案 7 :(得分:0)
如果您只想添加空的新列,reindex将会完成
df
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0 4 NaN NaN NaN
1 1 5 NaN NaN NaN
2 2 6 NaN NaN NaN
3 3 7 NaN NaN NaN
完整代码示例
import numpy as np
import pandas as pd
df = {'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
print('df',df, sep='\n')
print()
df=df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)
print('''df.reindex(list(df)+['column_new_1', 'column_new_2','column_new_3'], axis=1)''',df, sep='\n')
答案 8 :(得分:0)
我不习惯使用“索引”,依此类推...可能如下所示
df.columns
Index(['A123', 'B123'], dtype='object')
df=pd.concat([df,pd.DataFrame(columns=list('CDE'))])
df.rename(columns={
'C':'C123',
'D':'D123',
'E':'E123'
},inplace=True)
df.columns
Index(['A123', 'B123', 'C123', 'D123', 'E123'], dtype='object')
答案 9 :(得分:0)
如果您想为每一列使用不同的值,并且不介意在之前的行中创建字典,则可以实例化字典中的值。
>>> import pandas as pd
>>> import numpy as np
>>> df = pd.DataFrame({
'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]
})
>>> df
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
>>> cols = {
'column_new_1':np.nan,
'column_new_2':'dogs',
'column_new_3': 3
}
>>> df[list(cols)] = pd.DataFrame(data={k:[v]*len(df) for k,v in cols.items()})
>>> df
col_1 col_2 column_new_1 column_new_2 column_new_3
0 0 4 NaN dogs 3
1 1 5 NaN dogs 3
2 2 6 NaN dogs 3
3 3 7 NaN dogs 3
不一定比公认的答案更好,但这是尚未列出的另一种方法。
答案 10 :(得分:0)
使用 .assign()
进行字典映射:
这是在处理许多列时为新列分配值的最易读和最动态的方式。
import pandas as pd
import numpy as np
new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [np.nan, "dogs", 3]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)
如果您只是想将新列的值初始化为空,因为您要么不知道这些值将是什么,要么您有许多新列。
import pandas as pd
import numpy as np
new_cols = ["column_new_1", "column_new_2", "column_new_3"]
new_vals = [None for item in new_cols]
# Map new columns as keys and new values as values
col_val_mapping = dict(zip(new_cols, new_vals))
# Unpack new column/new value pairs and assign them to the data frame
df = df.assign(**col_val_mapping)