使用以下数据:
import datetime,numpy as np,pandas as pd
nan = np.nan
a = pd.DataFrame( {'price': {datetime.time(9, 0): 1, datetime.time(10, 0): 0, datetime.time(11, 0): 3, datetime.time(12, 0): 4, datetime.time(13, 0): 7, datetime.time(14, 0): 6, datetime.time(15, 0): 5, datetime.time(16, 0): 4, datetime.time(17, 0): 0, datetime.time(18, 0): 2, datetime.time(19, 0): 4, datetime.time(20, 0): 7}, 'reversal': {datetime.time(9, 0): 1, datetime.time(10, 0): nan, datetime.time(11, 0): nan, datetime.time(12, 0): nan, datetime.time(13, 0): nan,
datetime.time(14, 0): 6.0, datetime.time(15, 0): nan, datetime.time(16, 0): nan, datetime.time(17, 0): nan, datetime.time(18, 0): nan, datetime.time(19, 0): nan, datetime.time(20, 0): nan}})
a['target_hit']=nan;
a['target_miss']=nan;
a['reversal1']=a['reversal']+1;
a['reversal2']=a['reversal']-a['reversal'];
a.sort_index(1,inplace=True);
我按如下方式创建了一个子集:
hit = a.ix[:,:-2].dropna()
hit
其中输出显示两行匹配:
price reversal reversal1 reversal2
09:00:00 1 1.0 2.0 0.0
14:00:00 6 6.0 7.0 0.0
当我尝试使用这些行来匹配以下内容时,我收到此错误ValueError: operands could not be broadcast together with shapes (2,) (12,)
takeBoth = False
targetIsHit,targetIsMiss = False,False
if takeBoth:
targetHit = a[(hit['reversal1'].values==a['price'].values) & (hit['reversal1'].index.values<a['price'].index.values)];
targetMiss = a[(hit['reversal2'].values==a['price'].values) & (hit['reversal2'].index.values<a['price'].index.values)];
targetIsHit,targetIsMiss = not targetHit.empty, not targetMiss.empty
else:
targetHit = a[(hit['reversal1'].values==a['price'].values) & (hit['reversal1'].index.values<a['price'].index.values)];
targetIsHit = not targetHit.empty
if not targetIsHit:
targetMiss = a[(hit['reversal2'].values==a['price'].values) & (hit['reversal2'].index.values<a['price'].index.values)];
targetIsMiss = not targetMiss.empty
if targetIsHit:a.loc[hit.index.values,"target_hit"] = targetHit.index.values;
if targetIsMiss:a.loc[hit.index.values,"target_miss"] = targetMiss.index.values;
如果hit = a.ix[:,:-2].dropna()
只生成一行,我不会收到此错误。在阅读了这篇文章后,我看到这可能是由于广播规则造成的。
我应该迭代hit
中的行来避免这种情况吗?有关如何解决此问题的任何其他建议吗?
答案 0 :(得分:1)
是的,它必须是for循环...现在我改变它以从命中或错过中选择。
import datetime,numpy as np,pandas as pd;
nan = np.nan;
a = pd.DataFrame( {'price': {datetime.time(9, 0): 1, datetime.time(10, 0): 0, datetime.time(11, 0): 3, datetime.time(12, 0): 4, datetime.time(13, 0): 7, datetime.time(14, 0): 6, datetime.time(15, 0): 5, datetime.time(16, 0): 4, datetime.time(17, 0): 0, datetime.time(18, 0): 2, datetime.time(19, 0): 4, datetime.time(20, 0): 7}, 'reversal': {datetime.time(9, 0): 1, datetime.time(10, 0): nan, datetime.time(11, 0): nan, datetime.time(12, 0): nan, datetime.time(13, 0): nan,
datetime.time(14, 0): 6.0, datetime.time(15, 0): nan, datetime.time(16, 0): nan, datetime.time(17, 0): nan, datetime.time(18, 0): nan, datetime.time(19, 0): nan, datetime.time(20, 0): nan}});
a['target_hit']=a['target_miss']=nan;
a['reversal1']=a['reversal']+1;
a['reversal2']=a['reversal']-a['reversal'];
a.sort_index(1,inplace=True);
hits = a.ix[:,:-2].dropna();
for row,hit in hits.iterrows():
forwardRows = [row]<a['price'].index.values
targetHit = a.index.values[(hit['reversal1']==a['price'].values) & forwardRows][0];
targetMiss = a.index.values[(hit['reversal2']==a['price'].values) & forwardRows][0];
if targetHit>targetMiss:
a.loc[row,"target_miss"] = targetMiss;
else:
a.loc[row,"target_hit"] = targetHit;
print '#'*50
print a
'''
################################################## ################################################## price reversal reversal1 reversal2 target_hit target_miss 09:00:00 1 1.0 2.0 0.0 NaN 10:00:00 10:00:00 0 NaN NaN NaN NaN NaN 11:00:00 3 NaN NaN NaN NaN NaN 12:00:00 4 NaN NaN NaN NaN NaN 13:00:00 7 NaN NaN NaN NaN NaN 14:00:00 6 6.0 7.0 0.0 NaN 17:00:00 15:00:00 5 NaN NaN NaN NaN NaN 16:00:00 4 NaN NaN NaN NaN NaN 17:00:00 0 NaN NaN NaN NaN NaN 18:00:00 2 NaN NaN NaN NaN NaN 19:00:00 4 NaN NaN NaN NaN NaN 20:00:00 7 NaN NaN NaN NaN NaN
'''