我正在尝试使用小批量训练模型,但是出现了....错误。
我正在使用与其他模型相同的功能(并且已起作用),但是这次崩溃了。
def random_mini_batches(X, Y, mini_batch_size = 64):
"""
Creates a list of random minibatches from (X, Y)
Arguments:
X -- input data, of shape (input size, number of examples)
Y -- true "label" vector (1, number of examples)
mini_batch_size - size of the mini-batches, integer
Returns:
mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)
"""
m = X.shape[1] # number of training examples
mini_batches = []
# Step 1: Shuffle (X, Y)
permutation = list(np.random.permutation(m))
shuffled_X = X.iloc[:, permutation]
shuffled_Y = Y[:, permutation].reshape((Y.shape[0],m))
# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.
num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning
for k in range(0, num_complete_minibatches):
mini_batch_X = shuffled_X.iloc[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch_Y = shuffled_Y[:, k * mini_batch_size : k * mini_batch_size + mini_batch_size]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
# Handling the end case (last mini-batch < mini_batch_size)
if m % mini_batch_size != 0:
mini_batch_X = shuffled_X.iloc[:, num_complete_minibatches * mini_batch_size : m]
mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m]
mini_batch = (mini_batch_X, mini_batch_Y)
mini_batches.append(mini_batch)
return mini_batches
我已经在具有20层的X和Y的NN中使用了此功能: 现在,我尝试将其与5层NN和形状
一起使用但是,在代码epoch_cost += minibatch_cost/num_minibatches
的这一部分出现了错误。
完整的代码是这样的:
for epoch in range(num_epochs):
epoch_cost = 0
num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
minibatches = random_mini_batches(X_train, Y_train, minibatch_size)
for minibatch in minibatches:
#Select a minibatch
(minibatch_X, minibatch_Y) = minibatch
_, minibatch_cost = sess.run([optimizer, cost], feed_dict = {X: minibatch_X, Y: minibatch_Y})
epoch_cost += minibatch_cost/num_minibatches
# Print the cost every epoch
if print_cost == True and epoch % 100 == 0:
print("Cost after epoch %i: %f" % (epoch, epoch_cost))
if print_cost == True and epoch % 5 == 0:
costs.append(epoch_cost)
预先感谢
答案 0 :(得分:0)
我使用以下方法解决了该问题:
epoch_cost += np.mean(minibatch_cost)/num_minibatches
如果有人有其他解决方案,我很想听听。