我知道我的问题与统计数据有关,但我正在寻找R
的解决方案,因此我认为它适用于SO。
我使用glmer
中的lme4
包中的R
函数构建了一个广义线性混合效应模型(GLMM),以基于显着的解释变量模拟水产养殖场周围的物种丰富度Zuur等。 (2009) Mixed Effects Models and Extensions in Ecology with R 。该模型是:
Mod1 <- glmer(Richness ~ Distance + Depth + Substrate + Beggiatoa +
Distance*Beggiatoa + (1|Site/transect), family = poisson, data = mydata)
现在我有一个在不同站点收集的完整数据集,我想评估此模型在新数据集上的表现。
在CV上question之后,有人建议在新数据集上查找中位数绝对偏差(mad)。我尝试了mad
中stats
包中的R
函数,但收到以下错误消息:
Error in x[!is.na(x)] : object of type 'S4' is not subsettable
In addition: Warning messages:
1: In is.na(x) : is.na() applied to non-(list or vector) of type 'S4'
2: In is.na(x) : is.na() applied to non-(list or vector) of type 'S4'
有人知道这里出了什么问题吗?是否无法为GLMM计算mad
中的stats
?如果是这样,是否有其他R
包从GLMM计算疯狂?
修改
为了让您了解我的数据,这里是dput(head(mydata))
的输出,同时请注意新数据集中没有“Substrate”类别,而“S”指的是“Richness”:
structure(list(S = c(0, 1, 2, 3, 3, 2), Site = structure(c(1L,
1L, 1L, 1L, 1L, 1L), .Label = c("BC", "BH", "GC", "IS", "Ref"
), class = "factor"), Transect = structure(c(4L, 4L, 4L, 4L,
4L, 4L), .Label = c("10GC", "10IS", "10N", "10S", "11IS", "12IS",
"13E", "1GC", "1N", "1W", "2E", "2GC", "2IS", "2N", "2W", "2WA",
"3E", "3GC", "3IS", "3N", "3S", "4E", "4GC", "4IS", "4S", "4W",
"5GC", "5IS", "5S", "6GC", "6IS", "6N", "6S", "6W", "7E", "7GC",
"7IS", "8GC", "8IS", "8W", "9E", "9GC", "9IS", "9N", "RefBC1",
"RefBC10", "RefBC11", "RefBC12", "RefBC2", "RefBC3", "RefBC4",
"RefBC5", "RefBC6", "RefBC7", "RefBC8", "RefBC9", "X1", "X2"), class = "factor"),
Distance = c(2, 20, 40, 80, 120, 160), Depth = c(40L, 40L,
50L, 40L, 40L, 40L), Beggiatoa = c(2, 1, 1, 0, 0, 0)), .Names = c("S",
"Site", "Transect", "Distance", "Depth", "Beggiatoa"), row.names = c(NA,
6L), class = "data.frame")
答案 0 :(得分:2)
对于 in-sample 错误,中位绝对偏差计算只是
mad(residuals(fitted_model))
...您可能需要residuals(fitted_model,type="response")
,因为residuals
默认会为您提供偏差残差(参见?residuals.merMod
)
如果您想查看样例外错误,可以执行以下操作:
pred <- predict(fitted_model,
newdata = newdf,
type = "response",
re.form=~0)
mad(pred, center=newdf$S)
(re.form=~0
指定您要省略预测中的随机效果,这是您唯一的选择,除非您在已经获得培训数据的网站/横断面上预测