我有一个pandas数据帧,例如:
Col1 Col2
A 1
B 2
C 3
我理解如何基于Col2的值来创建Col3:
df['Col3'] = (df['Col2'] <= 1).astype(int)
但是......如果新列基于两个变量,如(伪代码):
if Col2=1 and Col3=1 then Col4='X'
else if Col2=1 and Col3=2 then Col4='Y'
else Col4='Z'
如何实现?非常感谢
答案 0 :(得分:1)
您可以尝试加倍numpy.where
:
df['Col4'] = np.where((df['Col2'] == 1) & (df['Col3'] == 1), 'X',
np.where((df['Col2'] == 1) & (df['Col3'] == 2), 'Y', 'Z'))
样品:
import pandas as pd
df = pd.DataFrame({'Col2': {0: 1, 1: 1, 2: 3},
'Col1': {0: 'A', 1: 'B', 2: 'C'},
'Col3': {0: 1, 1: 2, 2: 4}})
print (df)
Col1 Col2 Col3
0 A 1 1
1 B 1 2
2 C 3 4
df['Col4'] = np.where( (df['Col2'] == 1) & (df['Col3'] == 1), 'X',
np.where((df['Col2'] == 1) & (df['Col3'] == 2), 'Y', 'Z'))
print (df)
Col1 Col2 Col3 Col4
0 A 1 1 X
1 B 1 2 Y
2 C 3 4 Z
使用loc
和fillna
填充NaN
所有其他值的另一个解决方案:
df.loc[ (df['Col2'] == 1) & (df['Col3'] == 1) , 'Col4'] = 'X'
df.loc[ (df['Col2'] == 1) & (df['Col3'] == 2) , 'Col4'] = 'Y'
df['Col4'] = df['Col4'].fillna('Z')
print (df)
Col1 Col2 Col3 Col4
0 A 1 1 X
1 B 1 2 Y
2 C 3 4 Z
答案 1 :(得分:0)
您可以使用最终else
值初始化列(例如Z
),然后检查每个条件:
df['Col4'] = 'Z'
df.loc[(df.Col1 == 1) & (df.Col3 == 1), 'Col4'] = 'X'
df.loc[(df.Col2 == 1) & (df.Col3 == 2), 'Col4'] = 'Y'