我遇到重新安排一些数据的问题。
原始数据是:
structure(list(id = 1:3, artery.1 = structure(c(1L, 1L, 2L), .Label = c("a",
"b"), class = "factor"), artery.2 = structure(c(1L, NA, 2L), .Label = c("b",
"c"), class = "factor"), artery.3 = structure(c(1L, NA, 2L), .Label = c("c",
"d"), class = "factor"), artery.4 = structure(c(NA, NA, 1L), .Label = "e", class = "factor"), artery.5 = structure(c(NA, NA, 1L), .Label = "f", class = "factor"),
diameter.1 = c(3L, 2L, 1L), diameter.2 = c(2L, NA, 2L), diameter.3 = c(3L,
NA, 3L), diameter.4 = c(NA, NA, 4L), diameter.5 = c(NA, NA,
5L)), .Names = c("id", "artery.1", "artery.2", "artery.3",
"artery.4", "artery.5", "diameter.1", "diameter.2", "diameter.3",
"diameter.4", "diameter.5"), class = "data.frame", row.names = c(NA,
-3L))
# id artery.1 artery.2 artery.3 artery.4 artery.5 diameter.1 diameter.2 diameter.3 diameter.4 diameter.5
# 1 1 a b c <NA> <NA> 3 2 3 NA NA
# 2 2 a <NA> <NA> <NA> <NA> 2 NA NA NA NA
# 3 3 b c d e f 1 2 3 4 5
我想谈谈这个问题:
structure(list(id = 1:3, a = c(3L, 2L, NA), b = c(2L, NA, 1L),
c = c(3L, NA, 2L), d = c(NA, NA, 3L), e = c(NA, NA, 4L),
f = c(NA, NA, 5L)), .Names = c("id", "a", "b", "c", "d",
"e", "f"), class = "data.frame", row.names = c(NA, -3L))
# id a b c d e f
# 1 1 3 2 3 NA NA NA
# 2 2 2 NA NA NA NA NA
# 3 3 NA 1 2 3 4 5
基本上,a
到f
代表动脉,数值代表相应的直径。每行代表一名患者。
有没有一种巧妙的方法来排序这个数据帧?
答案 0 :(得分:3)
使用 tidyr 和 dplyr 包。
library(dplyr)
library(tidyr)
new.df <- gather(df, variable, value, artery.1:diameter.5) %>%
separate(variable, c('variable', 'num')) %>%
spread(variable, value) %>%
subset(!is.na(artery)) %>%
mutate(diameter = as.numeric(diameter)) %>%
select(-num) %>%
spread(artery, diameter)
输出:
id a b c d e f
1 1 3 2 3 NA NA NA
2 2 2 NA NA NA NA NA
3 3 NA 1 2 3 4 5
答案 1 :(得分:2)
在melt
函数中使用正则表达式选择变量时,使用dcast
/ data.table
与patterns
组合使用
library(data.table) #v>=1.9.6
dcast(melt(setDT(df),
id = "id",
measure = patterns("artery", "diameter")),
id ~ value1,
sum,
value.var = "value2",
subset = .(!is.na(value2)),
fill = NA)
# id a b c d e f
# 1: 1 3 2 3 NA NA NA
# 2: 2 2 NA NA NA NA NA
# 3: 3 NA 1 2 3 4 5
如您所见,melt
和dcast
都非常灵活,您可以使用正则表达式,指定子集,传递多个函数并指定填充缺失值的方式。
答案 2 :(得分:1)
您可以将xtabs
与基础R中的reshape
一起使用。使用后者将数据转换为长格式并使用前者获取计数表:
xtabs(diameter ~ id + artery, reshape(df, varying = 2:11, sep = '.', dir = "long"))
# artery
#id a b c d e f
# 1 3 2 3 0 0 0
# 2 2 0 0 0 0 0
# 3 0 1 2 3 4 5
答案 3 :(得分:1)
这可以通过两次reshape()
次来电来完成。首先,我们可以在artery
上对diameter
和id
进行缩写,然后使用artery
作为时间变量进行扩展。为了防止一列NA,我们还必须在中间帧中对artery
的NA值进行子集化。
reshape(subset(reshape(df,dir='l',varying=setdiff(names(df),'id'),timevar=NULL),!is.na(artery)),dir='w',timevar='artery');
## id diameter.a diameter.b diameter.c diameter.d diameter.e diameter.f
## 1.1 1 3 2 3 NA NA NA
## 2.1 2 2 NA NA NA NA NA
## 3.1 3 NA 1 2 3 4 5
如果需要,之后可以删除diameter.
前缀。但是,此解决方案的一个优点是它能够保留多个列集,而xtabs()
解决方案则不能。在这种情况下,前缀对于区分列集是必不可少的。