创建CSV文件时,列不在我想要的位置。例如,列'' Period'(此变量为'RD')是文件中的第二列等等。
有没有办法将每列的位置设置到我想要的位置?
我的代码:
from datetime import datetime
from elasticsearch import Elasticsearch
import csv
es = Elasticsearch(["9200"])
res = es.search(index="search", body=
{
"_source": ["VT","NCR","N","DT","RD"],
"query": {
"bool": {
"must": [{"range": {"VT": {
"gte": "now/d",
"lte": "now+1d/d"}}},
{"wildcard": {"user": "mike*"}}]}}},size=10)
csv_file = 'File_' + str(datetime.now().strftime('%Y_%m_%d - %H.%M.%S')) + '.csv'
header_names = { 'VT': 'Date', 'NCR': 'ExTime', 'N': 'Name', 'DT': 'Party', ' RD ': 'Period'}
with open(csv_file, 'w', newline='') as f:
header_present = False
for doc in res['hits']['hits']:
my_dict = doc['_source']
if not header_present:
w = csv.DictWriter(f, my_dict.keys())
w.writerow(header_names,)
header_present = True
w.writerow(my_dict)
答案 0 :(得分:3)
使用pandas非常简单:
import pandas as pd
# Read csv / tab-delimited in this example
df = pd.read_csv('example.csv', sep='\t')
print df
A B C
0 4 5 9
1 4 5 9
2 4 5 9
3 4 5 9
# Reorder columns
df = df[['C', 'A', 'B']]
print df
C A B
0 9 4 5
1 9 4 5
2 9 4 5
3 9 4 5
# Write csv / tab-delimited
df.to_csv('example.csv', sep='\t')
答案 1 :(得分:2)
字典未订购,如果要强制执行列排序,则需要明确指定
import csv
headers = ['Party', 'Period', 'Date', 'ExTime', 'Name'] # Don't use my_dict.keys()
with open('header.csv', 'w') as f:
w = csv.DictWriter(f, fieldnames=headers)
w.writeheader()
见
$ python sample.py && cat header.csv
Party,Period,Date,ExTime,Name
当您拨打w.writerow(my_dict)
时,字典将根据标题进行排序。
row = {'Period':2, 'Date':3, 'Name':5, 'Party': 1, 'ExTime':4}
w.writerow(row)
输出
Party,Period,Date,ExTime,Name
1,2,3,4,5
答案 2 :(得分:1)
当您处理csv文件时,最好为您的应用程序使用pandas。
import pandas as pd
# Let your file have 4 columns named c1, c2, c3 and c4
# And assume you want to reorder it to c2, c3, c1, c4
data_frame = pd.read_csv('filename.csv', delimiter=',') # reading csv file as data frame with pandas
new_data_frame = data_frame[['c2', 'c3', 'c1', 'c4']] # reordered the dataframe and stored in new_data_frame
# If you want to save the result to new csv file
new_data_frame.to_csv('altered.csv', index=None)
在您的情况下,假设列和分隔符的顺序是','
import pandas as pd
csv_file_name = 'File_' + str(datetime.now().strftime('%Y_%m_%d - %H.%M.%S')) + '.csv'
data_frame = pd.read_csv(csv_file_name, delimiter=',') # change delimiter to '\t' if needed
new_data_frame = data_frame[['Party', 'Period', 'Date', 'ExTime', 'Name']]
new_data_frame.to_csv('filename.csv', index=None)