我在我的ubuntu实例上设置了CoreNLP服务器,它运行正常。我对Sentiment模块更感兴趣,目前我得到的是
{
sentimentValue: "2",
sentiment: "Neutral"
}
我需要的是分数分配值,如您所见:http://nlp.stanford.edu:8080/sentiment/rntnDemo.html
"scoreDistr": [0.1685, 0.7187, 0.0903, 0.0157, 0.0068]
我缺少什么或如何获得此类数据?
由于
答案 0 :(得分:2)
您需要从带注释的句子中通过SentimentCoreAnnotations.SentimentAnnotatedTree.class
获取树对象。然后,您可以通过RNNCoreAnnotations
类获得预测。我在下面编写了以下自包含演示代码,演示了如何获取CoreNLP情感预测的每个标签的分数。
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
import org.ejml.simple.SimpleMatrix;
import edu.stanford.nlp.ling.CoreAnnotations;
import edu.stanford.nlp.neural.rnn.RNNCoreAnnotations;
import edu.stanford.nlp.pipeline.Annotation;
import edu.stanford.nlp.pipeline.StanfordCoreNLP;
import edu.stanford.nlp.sentiment.SentimentCoreAnnotations;
import edu.stanford.nlp.trees.Tree;
import edu.stanford.nlp.util.CoreMap;
public class DemoSentiment {
public static void main(String[] args) {
final List<String> texts = Arrays.asList("I am happy.", "This is a neutral sentence.", "I am very angry.");
final Properties props = new Properties();
props.setProperty("annotators", "tokenize, ssplit, parse, sentiment");
final StanfordCoreNLP pipeline = new StanfordCoreNLP(props);
for (String text : texts) {
final Annotation doc = new Annotation(text);
pipeline.annotate(doc);
for (CoreMap sentence : doc.get(CoreAnnotations.SentencesAnnotation.class)) {
final Tree tree = sentence.get(SentimentCoreAnnotations.SentimentAnnotatedTree.class);
final SimpleMatrix sm = RNNCoreAnnotations.getPredictions(tree);
final String sentiment = sentence.get(SentimentCoreAnnotations.SentimentClass.class);
System.out.println("sentence: "+sentence);
System.out.println("sentiment: "+sentiment);
System.out.println("matrix: "+sm);
}
}
}
}
输出将类似(某些浮点舍入错误或更新的模型可能会改变分数)到下面的内容。
对于第一句I am happy.
,您可以看到情绪为Positive
,并且在解释时,第四个位置的返回矩阵中的最高值为0.618
矩阵作为有序列表。
第二句This is a neutral sentence.
在中间得分最高,为0.952
,因此为Neutral
情绪。
最后一句相应地具有Negative
情绪,其中第二位的最高分为0.652
。
sentence: I am happy.
sentiment: Positive
matrix: Type = dense , numRows = 5 , numCols = 1
0.016
0.037
0.132
0.618
0.196
sentence: This is a neutral sentence.
sentiment: Neutral
matrix: Type = dense , numRows = 5 , numCols = 1
0.001
0.007
0.952
0.039
0.001
sentence: I am very angry.
sentiment: Negative
matrix: Type = dense , numRows = 5 , numCols = 1
0.166
0.652
0.142
0.028
0.012