我有一堆由同一个人写的文本,我正在尝试估算他们用于每个文本的模板。我的方式是:
TermDocumentMatrix
X
距离的对(为了争论而为10)我能够达到距离对的程度,但我无法将dist
实例转换为可以使用的实例。 底部有一个可重现的例子。
dist
实例中的数据如下所示:
行名和列名对应于原始文本列表中的索引,我可以用它来完成第5步。
我一直想要摆脱的是一个带有col name, row name, value
的稀疏矩阵。
col, row, value
1 2 14.966630
1 3 12.449900
1 4 13.490738
1 5 12.688578
1 6 12.369317
2 3 12.449900
2 4 13.564660
2 5 12.922848
2 6 12.529964
3 4 5.385165
3 5 5.830952
3 6 5.830952
4 5 7.416198
4 6 7.937254
5 6 7.615773
从这一点开始,我会很乐意切掉比我的截止值更大的所有对并使森林变平,即在此示例中返回3个模板,仅包含文档1的组,仅包含文档2的组和包含文档的第三组3,4,5和6。
我已经尝试了一些东西,从创建一个矩阵,然后尝试使其稀疏,直接使用dist
类中的向量,我似乎无法想象它进行。
可重复的例子:
tdm <- matrix(c(1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,3,1,2,2,2,3,2,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,2,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,4,1,1,1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,2,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,0,1,0,1,0,0,2,0,0,0,0,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,3,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,2,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,3,1,1,1,1,0,1,0,0,0,0,1,2,0,1,1,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,0,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,1,1,2,1,1,1,0,0,0,0,1,2,2,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,0,2,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,2,0,2,2,3,2,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,2,1,1,1,1,1,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0,0,1,0,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,2,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,1,0,2,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,3,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,4,2,4,6,4,3,1,0,1,2,1,1,0,1,0,0,0,0,2,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,2,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,2,1,2,2,2,2,1,0,1,2,1,1,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,2,2,2,2,2,2,3,3,4,5,3,1,2,1,1,1,1,1,1,0,0,0,0,3,3,0,0,1,1,0,1,0,0,0,0), nrow=6)
rownames(tdm) <- 1:6
colnames(tdm) <- paste("term", 1:229, sep="")
tdm.dist <- dist(tdm)
# I'm stuck turning tdm.dist into what I have shown
答案 0 :(得分:2)
将类似“矩阵”的对象转换为[row,col,value]“data.frame”的经典方法是as.data.frame(as.table(.))
路由。具体来说,我们需要:
subset(as.data.frame(as.table(as.matrix(tdm.dist))), as.numeric(Var1) < as.numeric(Var2))
但这包括太多的强制和更大的对象的创建只是立即成为子集。
由于dist
以“lower.tri”角度形式存储其值,我们可以使用combn
生成行/列索引,使用“dist”对象生成cbind
:< / p>
data.frame(do.call(rbind, combn(attr(tdm.dist, "Size"), 2, simplify = FALSE)), c(tdm.dist))
此外,“Matrix”软件包具有一定的灵活性,可以在此处使用创建对象的内存效率:
library(Matrix)
tmp = combn(attr(tdm.dist, "Size"), 2)
summary(sparseMatrix(i = tmp[2, ], j = tmp[1, ], x = c(tdm.dist),
dims = rep_len(attr(tdm.dist, "Size"), 2), symmetric = TRUE))
此外,在处理“dist”对象的不同函数中,
cutree(hclust(tdm.dist), h = 10)
#1 2 3 4 5 6
#1 2 3 3 3 3
通过指定切割高度进行分组。
答案 1 :(得分:1)
这就是我过去使用dplyr
和tidyr
包做过类似的事情。
您可以逐行运行链式(%>%
)脚本,以查看数据集如何逐步更新。
tdm <- matrix(c(1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,3,1,2,2,2,3,2,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,1,2,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,4,1,1,1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0,0,1,1,1,0,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,2,0,0,1,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,0,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,0,0,1,0,1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,1,0,1,0,0,1,1,1,1,0,1,0,1,0,0,2,0,0,0,0,0,1,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,3,1,1,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,1,1,1,0,0,1,1,1,1,0,0,0,1,0,0,2,0,0,0,1,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,3,1,1,1,1,0,1,0,0,0,0,1,2,0,1,1,0,0,0,0,1,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,0,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,1,1,2,1,1,1,0,0,0,0,1,2,2,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,1,1,1,0,2,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,2,0,2,2,3,2,1,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,1,0,0,0,0,0,0,1,1,1,1,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,2,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,2,1,1,1,1,1,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0,0,1,0,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0,0,1,0,1,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,2,1,1,1,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,1,0,2,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,3,0,1,1,1,1,0,0,1,0,1,1,1,0,0,0,0,0,1,0,0,0,0,0,4,2,4,6,4,3,1,0,1,2,1,1,0,1,0,0,0,0,2,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,2,0,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,2,1,2,2,2,2,1,0,1,2,1,1,0,1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,2,2,2,2,2,2,3,3,4,5,3,1,2,1,1,1,1,1,1,0,0,0,0,3,3,0,0,1,1,0,1,0,0,0,0), nrow=6)
rownames(tdm) <- 1:6
colnames(tdm) <- paste("term", 1:229, sep="")
tdm.dist <- dist(tdm)
library(dplyr)
library(tidyr)
tdm.dist %>%
as.matrix() %>% # update dist object to a matrix
data.frame() %>% # update matrix to a data frame
setNames(nm = 1:ncol(.)) %>% # update column names
mutate(names1 = 1:nrow(.)) %>% # use rownames as a variable
gather(names2, value , -names1) %>% # reshape data
filter(names1 <= names2) # keep the values only once
# names1 names2 value
# 1 1 1 0.000000
# 2 1 2 14.966630
# 3 2 2 0.000000
# 4 1 3 12.449900
# 5 2 3 12.449900
# 6 3 3 0.000000
# 7 1 4 13.490738
# 8 2 4 13.564660
# 9 3 4 5.385165
# 10 4 4 0.000000
# 11 1 5 12.688578
# 12 2 5 12.922848
# 13 3 5 5.830952
# 14 4 5 7.416198
# 15 5 5 0.000000
# 16 1 6 12.369317
# 17 2 6 12.529964
# 18 3 6 5.830952
# 19 4 6 7.937254
# 20 5 6 7.615773
# 21 6 6 0.000000