在OpenCv2中将像素坐标转换为世界坐标

时间:2016-08-09 08:42:03

标签: c++ opencv image-processing coordinates tracking

我的程序用于对象跟踪。 我可以对象跟踪并通过矩量方法提供对象x,y和坐标。

enter image description here

enter image description here

我想在OpenCV2中将像素坐标转换为世界坐标。 我已经有旋转矩阵(3 * 3)和翻译矢量(3 * 1) )通过相机校准,我知道相机的焦距。

现在,我定义如下。

 CvMat *rotation = (CvMat*)cvLord("Rotation.xml")
 CvMat *translation = (CvMat*)cvLord("Translation.xml")

这是我计划的一部分。

void trackFilteredObject(Mat threshold,Mat HSV, Mat &Birds_image){

  vector <Fruit> apples;

  Mat temp;
  threshold.copyTo(temp);

  // these two vectors needed for output of findContours
  vector< vector<Point> > contours;
  vector<Vec4i> hierarchy;

  // find contours of filtered image using OpenCv findCountours function
  findContours(temp,contours,hierarchy,CV_RETR_CCOMP,CV_CHAIN_APPROX_SIMPLE );

  // use moments method to find our filtered object.
    double refArea = 0;
    bool objectFound = false;
    if (hierarchy.size() > 0) {
    int numObjects = hierarchy.size();

    // if number of objects greater than MAX_NUM_OBJECTS, we have a noisy filter.
    if(numObjects<MAX_NUM_OBJECTS){
        for (int index = 0; index >= 0; index = hierarchy[index][0]) {
            Moments moment = moments((cv::Mat)contours[index]);
            double area = moment.m00;

            if(area>MIN_OBJECT_AREA){
                Fruit apple;

                // moments method
                apple.setXPos(moment.m10/area);
                apple.setYPos(moment.m01/area); 
                apples.push_back(apple);

                objectFound = true;

             }else objectFound = false;
        }
        if(objectFound ==true){
            // draw object location on screen
            drawObject(apples,Birds_image);
        }
     }else putText(Birds_image,"TOO MUCH NOISE! ADJUST FILTER",Point(0,50),1,2,Scalar(0,0,255),2);
     }
}

drawObject(apples,Birds_image)就是这个。

void drawObject(vector<Fruit> theFruits,Mat &frame){
  for(int i =0; i<theFruits.size(); i++){
  cv::circle(frame,cv::Point(theFruits.at(i).getXPos(),theFruits.at(i).getYPos()),10,cv::Scalar(0,0,255));
  cv::putText(frame,intToString(theFruits.at(i).getXPos())+ " , " + intToString(theFruits.at(i).getYPos()),cv::Point(theFruits.at(i).getXPos(),theFruits.at(i).getYPos()+20),1,1,Scalar(0,255,0));
  }
}

我使用这些souse文件和头文件。

Fruit.h

#pragma once
#include <string>
using namespace std;

class Fruit
{
public:
Fruit(void);
~Fruit(void);

int getXPos();
void setXPos(int x);


int getYPos();
void setYPos(int y);

private:

int xPos, yPos;
string type;

};

Fruit.cpp

#include "Fruit.h"


Fruit::Fruit(void)
{
}


Fruit::~Fruit(void)
{
}

int Fruit::getXPos(){
return Fruit::xPos;
}

void Fruit::setXPos(int x){
Fruit::xPos = x;
xPos = x;
}

int Fruit::getYPos(){
return Fruit::yPos;
}

void Fruit::setYPos(int y){
Fruit::yPos = y;
yPos = y;
}

你能否给我一些精彩的想法。

1 个答案:

答案 0 :(得分:0)

查看opencv中的findHomography函数。它有助于找到从一个平面到另一个平面的转换,但只能找到2D坐标 此链接提供了将坐标从图像平面转换为对象平面的类似示例。 (Camera pixels to planar world points given 4 known points