np_utils.to_categorical反向

时间:2016-08-09 07:55:31

标签: python numpy keras

import numpy as np
from keras.utils import np_utils
nsample = 100
sample_space = ["HOME","DRAW","AWAY"]
array = np.random.choice(sample_space, nsample, )
uniques, coded_id = np.unique(array, return_inverse=True)
coded_array = np_utils.to_categorical(coded_id)

实施例

输入

 ['AWAY', 'HOME', 'DRAW', 'AWAY', ...]

输出coded_array

[[ 0.  1.  0.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 ..., 
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 1.  0.  0.]]

如何反转进程并从coded_array获取原始数据?

1 个答案:

答案 0 :(得分:10)

您可以使用np.argmax检索这些ids,然后只需将uniques编入索引即可获得原始数组。因此,我们将有一个实现,如此 -

uniques[y_code.argmax(1)]

示例运行 -

In [44]: arr
Out[44]: array([5, 7, 3, 2, 4, 3, 7])

In [45]: uniques, ids = np.unique(arr, return_inverse=True)

In [46]: y_code = np_utils.to_categorical(ids, len(uniques))

In [47]: uniques[y_code.argmax(1)]
Out[47]: array([5, 7, 3, 2, 4, 3, 7])