我正在使用Spark Streaming从Kafka获取批量的JSON读数。生成的批次从RDD转换为数据框。
我的目标是对此数据帧的每一行进行分类,因此我使用VectorAssembler创建将传递给模型的功能:
sqlContext = SQLContext(rdd.context)
rawReading = sqlContext.jsonRDD(rdd)
sensorReadings = rawReading.selectExpr("actual.y AS yaw","actual.p AS pitch", "actual.r AS roll")
assembler = VectorAssembler(
inputCols=["yaw", "pitch", "roll"],
outputCol="features")
sensorReadingsFinal = assembler.transform(sensorReadings)
sensorReadingsFinal.show()
+---+-----+----+-----------------+
|yaw|pitch|roll| features|
+---+-----+----+-----------------+
| 18| 17.5| 120|[18.0,17.5,120.0]|
| 18| 17.5| 120|[18.0,17.5,120.0]|
| 18| 17.5| 120|[18.0,17.5,120.0]|
| 18| 17.5| 120|[18.0,17.5,120.0]|
| 18| 17.5| 120|[18.0,17.5,120.0]|
+---+-----+----+-----------------+
我有一个我之前训练过的随机森林模型。
loadedModel = RandomForestModel.load(sc, "MyRandomForest.model")
我的问题是,在将整个内容插入数据库之前,如何对数据框中的每一行进行预测?
我最初在考虑做这样的事情......
prediction = loadedModel.predict(sensorReadings.features)
但我意识到由于数据帧有多行,我需要以某种方式添加一列并逐行进行预测。也许我说这一切都错了?
我喜欢的最终数据框是这样的:
+---+-----+----+-----------------+
|yaw|pitch|roll| Prediction|
+---+-----+----+-----------------+
| 18| 17.5| 120| 1 |
| 18| 17.5| 120| 1 |
| 18| 17.5| 120| 1 |
| 18| 17.5| 120| 1 |
| 18| 17.5| 120| 1 |
+---+-----+----+-----------------+
此时我会将其保存到数据库中:
sensorReadingsFinal.write.jdbc("jdbc:mysql://localhost/testdb", "SensorReadings", properties=connectionProperties)
答案 0 :(得分:0)
以下是我最终要解决的问题:
# Convert DStream RDD's to DataFrame and run SQL query
sqlContext = SQLContext(rdd.context)
if rdd.isEmpty() == False:
rawReading = sqlContext.jsonRDD(rdd)
sensorReadings = rawReading.selectExpr("actual.y AS yaw","actual.p AS pitch", "actual.r AS roll")
assembler = VectorAssembler(
inputCols=["yaw","pitch","roll"], # Must be in same order as what was used to train the model. Testing using only pitch since model has limited dataset.
outputCol="features")
sensorReadings = assembler.transform(sensorReadings)
# Create a new dataFrame of predictions and readingID
predictions = loadedModel.predict(sensorReadings.map(lambda x: x.features))
predictionsDF = sensorReadings.map(lambda x: x.readingID).zip(predictions).toDF(["readingID","positionID"])
# Join the prediction dataFrame back to the sensorReadings dataFrame. Drop the duplicate readingID column.
combinedDF = sensorReadings.join(predictionsDF, sensorReadings.readingID == predictionsDF.readingID).drop(predictionsDF.readingID)
# Drop the feature vector column
combinedDF = combinedDF.drop("features")
combinedDF.show()
我基本上创建了一个仅包含特征向量和readingID的新dataFrame,然后将其连接回原始的dataFrame。
这可能不是最优雅的解决方案,所以如果有人能提出更好的建议,请做。
答案 1 :(得分:0)
在 Spark ML 中,从数据中获取预测的方法称为 transform
,所以我猜你正在寻找这个:
prediction = loadedModel.transform(sensorReadings)