我一直在尝试使用fmin_cg来最小化Logistic回归的成本函数。
xopt = fmin_cg(costFn, fprime=grad, x0= initial_theta,
args = (X, y, m), maxiter = 400, disp = True, full_output = True )
这就是我调用我的fmin_cg
的方式这是我的CostFn:
def costFn(theta, X, y, m):
h = sigmoid(X.dot(theta))
J = 0
J = 1 / m * np.sum((-(y * np.log(h))) - ((1-y) * np.log(1-h)))
return J.flatten()
这是我的毕业生:
def grad(theta, X, y, m):
h = sigmoid(X.dot(theta))
J = 1 / m * np.sum((-(y * np.log(h))) - ((1-y) * np.log(1-h)))
gg = 1 / m * (X.T.dot(h-y))
return gg.flatten()
似乎抛出了这个错误:
/Users/sugethakch/miniconda2/lib/python2.7/site-packages/scipy/optimize/linesearch.pyc in phi(s)
85 def phi(s):
86 fc[0] += 1
---> 87 return f(xk + s*pk, *args)
88
89 def derphi(s):
ValueError: operands could not be broadcast together with shapes (3,) (300,)
我知道这与我的尺寸有关。但我似乎无法弄明白。 我是菜鸟,所以我可能犯了一个明显的错误。
我已阅读此链接:
fmin_cg: Desired error not necessarily achieved due to precision loss
但是,它似乎对我不起作用。
任何帮助?
更新了X,y,m,theta的大小
(100,3)----> X
(100,1)-----> ÿ
100 ---->米
(3,1)----> THETA
这是我初始化X,y,m:
的方法data = pd.read_csv('ex2data1.txt', sep=",", header=None)
data.columns = ['x1', 'x2', 'y']
x1 = data.iloc[:, 0].values[:, None]
x2 = data.iloc[:, 1].values[:, None]
y = data.iloc[:, 2].values[:, None]
# join x1 and x2 to make one array of X
X = np.concatenate((x1, x2), axis=1)
m, n = X.shape
ex2data1.txt:
34.62365962451697,78.0246928153624,0
30.28671076822607,43.89499752400101,0
35.84740876993872,72.90219802708364,0
.....
如果有帮助,我正在尝试重新编写Andrew Ng在Python中为Coursera的ML课程做的一项家庭作业
答案 0 :(得分:1)
最后,我弄清楚我的初始计划中的问题是什么。
我的' y'是(100,1),fmin_cg期望(100,)。一旦我压扁了我的“#”;它不再抛出初始错误。但是,优化仍然没有奏效。
Warning: Desired error not necessarily achieved due to precision loss.
Current function value: 0.693147
Iterations: 0
Function evaluations: 43
Gradient evaluations: 41
这与我没有优化的结果相同。
我发现优化这种方法的方法是使用Nelder-Mead'方法。我按照这个答案:scipy is not optimizing and returns "Desired error not necessarily achieved due to precision loss"
Result = op.minimize(fun = costFn,
x0 = initial_theta,
args = (X, y, m),
method = 'Nelder-Mead',
options={'disp': True})#,
#jac = grad)
这种方法不需要雅可比人。 我得到了我想要的结果,
Optimization terminated successfully.
Current function value: 0.203498
Iterations: 157
Function evaluations: 287
答案 1 :(得分:0)
好吧,因为我不确切地知道你的初始化m
,X
,y
和theta
我必须做出一些假设。希望我的回答是相关的:
import numpy as np
from scipy.optimize import fmin_cg
from scipy.special import expit
def costFn(theta, X, y, m):
# expit is the same as sigmoid, but faster
h = expit(X.dot(theta))
# instead of 1/m, I take the mean
J = np.mean((-(y * np.log(h))) - ((1-y) * np.log(1-h)))
return J #should be a scalar
def grad(theta, X, y, m):
h = expit(X.dot(theta))
J = np.mean((-(y * np.log(h))) - ((1-y) * np.log(1-h)))
gg = (X.T.dot(h-y))
return gg.flatten()
# initialize matrices
X = np.random.randn(100,3)
y = np.random.randn(100,) #this apparently needs to be a 1-d vector
m = np.ones((3,)) # not using m, used np.mean for a weighted sum (see ali_m's comment)
theta = np.ones((3,1))
xopt = fmin_cg(costFn, fprime=grad, x0=theta, args=(X, y, m), maxiter=400, disp=True, full_output=True )
代码运行时,我不太了解您的问题,知道这是否是您正在寻找的。但希望这可以帮助您更好地理解问题。检查答案的一种方法是使用fmin_cg
致电fprime=None
并查看答案的比较方式。