使用OpenCV检测彩色圆圈及其中心

时间:2016-08-08 11:00:47

标签: python python-2.7 opencv computer-vision opencv3.1

我正在尝试检测蓝色的CIRCLE及其中心。然后在检测到的圆圈上画一个圆圈,在它的中心画一个很小的圆圈。但是我收到了一些错误。 (我使用OpenCV 3.1.0,Python 2.7 Anaconda 64位,PyCharm作为IDE)(请帮我使用python代码) 我运行以下代码:

import cv2
import numpy as np

cap = cv2.VideoCapture(0)
if cap.isOpened():
    while(True):
        frame, _ = cap.read()
        # blurring the frame that's captured
        frame_gau_blur = cv2.GaussianBlur(frame, (3, 3), 0)
        # converting BGR to HSV
        hsv = cv2.cvtColor(frame_gau_blur, cv2.COLOR_BGR2HSV)
        # the range of blue color in HSV
        lower_blue = np.array([110, 50, 50])
        higher_blue = np.array([130, 255, 255])
        # getting the range of blue color in frame
        blue_range = cv2.inRange(hsv, lower_blue, higher_blue)
        # getting the V channel which is the gray channel
        blue_s_gray = blue_range[::2]
        # applying HoughCircles
        circles = cv2.HoughCircles(blue_s_gray, cv2.HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50)
        circles = np.uint16(np.around(circles))
        for i in circles[0,:]:
            # drawing on detected circle and its center
            cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)
            cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)
        cv2.imshow('circles', frame)
        k = cv2.waitKey(5) & 0xFF
        if k == 27:
            break
    cv2.destroyAllWindows()
else:
    print "Can't find camera"

运行代码时出现的错误是:

  

OpenCV错误:cv :: cvtColor中的断言失败(深度== CV_8U ||深度== CV_16U ||深度== CV_32F),文件C:\ builds \ master_PackSlaveAddon-win64-vc12-static \ opencv \ modules \ imgproc \ src \ color.cpp,第7935行   Traceback(最近一次调用最后一次):     文件" C:/Users/Meliodas/PycharmProjects/OpenCV_By_Examples/code_tester.py" ;,第11行,在       hsv = cv2.cvtColor(frame_gau_blur,cv2.COLOR_BGR2HSV)   cv2.error:C:\ builds \ master_PackSlaveAddon-win64-vc12-static \ opencv \ modules \ imgproc \ src \ color.cpp:7935:错误:(-215)深度== CV_8U ||深度== CV_16U ||函数cv :: cvtColor

中的深度== CV_32F

非常感谢您的帮助!

2 个答案:

答案 0 :(得分:1)

我已经解决了我的问题,在查找了在线错误的意义后(我得到的那个),我能够找到他们的解决方案,因此我能够解决它们。如果您运行下面给出的以下代码,您应该能够很好地检测蓝色圆圈。非常感谢那些试图帮我解决问题的人。

代码如下:

import cv2
import numpy as np

cap = cv2.VideoCapture(0)
if cap.isOpened():
    while(True):
        ret, frame = cap.read()
        # blurring the frame that's captured
        frame_gau_blur = cv2.GaussianBlur(frame, (3, 3), 0)
        # converting BGR to HSV
        hsv = cv2.cvtColor(frame_gau_blur, cv2.COLOR_BGR2HSV)
        # the range of blue color in HSV
        lower_blue = np.array([110, 50, 50])
        higher_blue = np.array([130, 255, 255])
        # getting the range of blue color in frame
        blue_range = cv2.inRange(hsv, lower_blue, higher_blue)
        res_blue = cv2.bitwise_and(frame_gau_blur,frame_gau_blur, mask=blue_range)
        blue_s_gray = cv2.cvtColor(res_blue, cv2.COLOR_BGR2GRAY)
        canny_edge = cv2.Canny(blue_s_gray, 50, 240)
        # applying HoughCircles
        circles = cv2.HoughCircles(canny_edge, cv2.HOUGH_GRADIENT, dp=1, minDist=10, param1=10, param2=20, minRadius=100, maxRadius=120)
        cir_cen = []
        if circles != None:
            # circles = np.uint16(np.around(circles))
            for i in circles[0,:]:
                # drawing on detected circle and its center
                cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)
                cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)
                cir_cen.append((i[0],i[1]))
        print cir_cen
        cv2.imshow('circles', frame)
        cv2.imshow('gray', blue_s_gray)
        cv2.imshow('canny', canny_edge)
        k = cv2.waitKey(5) & 0xFF
        if k == 27:
            break
    cv2.destroyAllWindows()
else:
    print 'no cam'

答案 1 :(得分:0)

frame, _ = cap.read()更改为ret,frame = cap.read()

import cv2
import numpy as np

cap = cv2.VideoCapture(0)
if cap.isOpened():
while(True):
    ret,frame= cap.read()
    # blurring the frame that's captured
    frame_gau_blur = cv2.GaussianBlur(frame, (3, 3), 0)
    # converting BGR to HSV
    hsv = cv2.cvtColor(frame_gau_blur, cv2.COLOR_BGR2HSV)
    # the range of blue color in HSV
    lower_blue = np.array([110, 50, 50])
    higher_blue = np.array([130, 255, 255])
    # getting the range of blue color in frame
    blue_range = cv2.inRange(hsv, lower_blue, higher_blue)
    # getting the V channel which is the gray channel
    blue_s_gray = blue_range[::2]
    # applying HoughCircles
    circles = cv2.HoughCircles(blue_s_gray, cv2.HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50)
    circles = np.uint16(np.around(circles))
    for i in circles[0,:]:
        # drawing on detected circle and its center
        cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)
        cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)
    cv2.imshow('circles', frame)
    k = cv2.waitKey(5) & 0xFF
    if k == 27:
        break
cv2.destroyAllWindows()