我正在尝试检测蓝色的CIRCLE及其中心。然后在检测到的圆圈上画一个圆圈,在它的中心画一个很小的圆圈。但是我收到了一些错误。 (我使用OpenCV 3.1.0,Python 2.7 Anaconda 64位,PyCharm作为IDE)(请帮我使用python代码) 我运行以下代码:
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
if cap.isOpened():
while(True):
frame, _ = cap.read()
# blurring the frame that's captured
frame_gau_blur = cv2.GaussianBlur(frame, (3, 3), 0)
# converting BGR to HSV
hsv = cv2.cvtColor(frame_gau_blur, cv2.COLOR_BGR2HSV)
# the range of blue color in HSV
lower_blue = np.array([110, 50, 50])
higher_blue = np.array([130, 255, 255])
# getting the range of blue color in frame
blue_range = cv2.inRange(hsv, lower_blue, higher_blue)
# getting the V channel which is the gray channel
blue_s_gray = blue_range[::2]
# applying HoughCircles
circles = cv2.HoughCircles(blue_s_gray, cv2.HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# drawing on detected circle and its center
cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)
cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)
cv2.imshow('circles', frame)
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
cv2.destroyAllWindows()
else:
print "Can't find camera"
运行代码时出现的错误是:
OpenCV错误:cv :: cvtColor中的断言失败(深度== CV_8U ||深度== CV_16U ||深度== CV_32F),文件C:\ builds \ master_PackSlaveAddon-win64-vc12-static \ opencv \ modules \ imgproc \ src \ color.cpp,第7935行 Traceback(最近一次调用最后一次): 文件" C:/Users/Meliodas/PycharmProjects/OpenCV_By_Examples/code_tester.py" ;,第11行,在 hsv = cv2.cvtColor(frame_gau_blur,cv2.COLOR_BGR2HSV) cv2.error:C:\ builds \ master_PackSlaveAddon-win64-vc12-static \ opencv \ modules \ imgproc \ src \ color.cpp:7935:错误:(-215)深度== CV_8U ||深度== CV_16U ||函数cv :: cvtColor
中的深度== CV_32F
非常感谢您的帮助!
答案 0 :(得分:1)
我已经解决了我的问题,在查找了在线错误的意义后(我得到的那个),我能够找到他们的解决方案,因此我能够解决它们。如果您运行下面给出的以下代码,您应该能够很好地检测蓝色圆圈。非常感谢那些试图帮我解决问题的人。
代码如下:
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
if cap.isOpened():
while(True):
ret, frame = cap.read()
# blurring the frame that's captured
frame_gau_blur = cv2.GaussianBlur(frame, (3, 3), 0)
# converting BGR to HSV
hsv = cv2.cvtColor(frame_gau_blur, cv2.COLOR_BGR2HSV)
# the range of blue color in HSV
lower_blue = np.array([110, 50, 50])
higher_blue = np.array([130, 255, 255])
# getting the range of blue color in frame
blue_range = cv2.inRange(hsv, lower_blue, higher_blue)
res_blue = cv2.bitwise_and(frame_gau_blur,frame_gau_blur, mask=blue_range)
blue_s_gray = cv2.cvtColor(res_blue, cv2.COLOR_BGR2GRAY)
canny_edge = cv2.Canny(blue_s_gray, 50, 240)
# applying HoughCircles
circles = cv2.HoughCircles(canny_edge, cv2.HOUGH_GRADIENT, dp=1, minDist=10, param1=10, param2=20, minRadius=100, maxRadius=120)
cir_cen = []
if circles != None:
# circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# drawing on detected circle and its center
cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)
cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)
cir_cen.append((i[0],i[1]))
print cir_cen
cv2.imshow('circles', frame)
cv2.imshow('gray', blue_s_gray)
cv2.imshow('canny', canny_edge)
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
cv2.destroyAllWindows()
else:
print 'no cam'
答案 1 :(得分:0)
将frame, _ = cap.read()
更改为ret,frame = cap.read()
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
if cap.isOpened():
while(True):
ret,frame= cap.read()
# blurring the frame that's captured
frame_gau_blur = cv2.GaussianBlur(frame, (3, 3), 0)
# converting BGR to HSV
hsv = cv2.cvtColor(frame_gau_blur, cv2.COLOR_BGR2HSV)
# the range of blue color in HSV
lower_blue = np.array([110, 50, 50])
higher_blue = np.array([130, 255, 255])
# getting the range of blue color in frame
blue_range = cv2.inRange(hsv, lower_blue, higher_blue)
# getting the V channel which is the gray channel
blue_s_gray = blue_range[::2]
# applying HoughCircles
circles = cv2.HoughCircles(blue_s_gray, cv2.HOUGH_GRADIENT, 1, 10, 100, 30, 5, 50)
circles = np.uint16(np.around(circles))
for i in circles[0,:]:
# drawing on detected circle and its center
cv2.circle(frame,(i[0],i[1]),i[2],(0,255,0),2)
cv2.circle(frame,(i[0],i[1]),2,(0,0,255),3)
cv2.imshow('circles', frame)
k = cv2.waitKey(5) & 0xFF
if k == 27:
break
cv2.destroyAllWindows()