我做了一个重复测量的方差分析:
> Type III Repeated Measures MANOVA Tests:
> Term: (Intercept) Response transformation matrix:
(Intercept)
> [1,] 1
> [2,] 1
> [3,] 1
> [4,] 1
> Sum of squares and products for the hypothesis:
(Intercept)
> (Intercept) 381.3062
> Sum of squares and products for error:
(Intercept)
> (Intercept) 3.346528
> Multivariate Tests: (Intercept)
> Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.9913 4443.694 1 39 < 2.22e-16 ***
> Wilks 1 0.0087 4443.694 1 39 < 2.22e-16 ***
> Hotelling-Lawley 1 113.9409 4443.694 1 39 < 2.22e-16 ***
> Roy 1 113.9409 4443.694 1 39 < 2.22e-16 ***
> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> Term: storytype Response transformation matrix:
storytype1
> [1,] -1
> [2,] -1
> [3,] 1
> [4,] 1
> Sum of squares and products for the hypothesis:
storytype1
> storytype1 0.75625
> Sum of squares and products for error:
storytype1
> storytype1 2.479861
> Multivariate Tests: storytype
Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.2336910 11.89331 1 39 0.0013658 **
> Wilks 1 0.7663090 11.89331 1 39 0.0013658 **
> Hotelling-Lawley 1 0.3049566 11.89331 1 39 0.0013658 **
> Roy 1 0.3049566 11.89331 1 39 0.0013658 **
> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> Term: questiontype
> Response transformation matrix:
questiontype1
> [1,] -1
> [2,] 1
> [3,] -1
> [4,] 1
> Sum of squares and products for the hypothesis:
questiontype1
> questiontype1 0.4340278
> Sum of squares and products for error:
questiontype1
> questiontype1 1.496528
> Multivariate Tests: questiontype
Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.2248201 11.3109 1 39 0.0017376 **
> Wilks 1 0.7751799 11.3109 1 39 0.0017376 **
> Hotelling-Lawley 1 0.2900232 11.3109 1 39 0.0017376 **
> Roy 1 0.2900232 11.3109 1 39 0.0017376 **
> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> Term: storytype:questiontype
> Response transformation matrix:
storytype1:questiontype1
> [1,] 1
> [2,] -1
> [3,] -1
> [4,] 1
> Sum of squares and products for the hypothesis:
storytype1:questiontype1
> storytype1:questiontype1 0.01736111
> Sum of squares and products for error:
storytype1:questiontype1
> storytype1:questiontype1 1.385417
> Multivariate Tests: storytype:questiontype
Df test stat approx F num Df den Df Pr(>F)
> Pillai 1 0.0123762 0.4887218 1 39 0.48865
> Wilks 1 0.9876238 0.4887218 1 39 0.48865
> Hotelling-Lawley 1 0.0125313 0.4887218 1 39 0.48865
> Roy 1 0.0125313 0.4887218 1 39 0.48865
> Univariate Type III Repeated-Measures ANOVA Assuming Sphericity
SS num Df Error SS den Df F Pr(>F)
> (Intercept) 95.327 1 0.83663 39 4443.6935 < 2.2e-16 ***
> storytype 0.189 1 0.61997 39 11.8933 0.001366 **
> questiontype 0.109 1 0.37413 39 11.3109 0.001738 **
> storytype:questiontype 0.004 1 0.34635 39 0.4887 0.488647
现在我想测试效果大小,我在这里找到了解决方案,所以我做到了:
> #install.packages("heplots")
> library(heplots)
> etasq(anovaModel, anova=TRUE) #0.9919
R回答:
> Note: model has only an intercept; equivalent type-III tests substituted.
eta^2
> (Intercept) 0.9918861
有人可以向我解释这是对的吗?不是0.99极高吗?