我有两张有效树的图(即单根,没有循环)。它们是微不一样的:其中一个叶子另一个没有叶子。有没有办法使用Gremlin或其他可能的图形查询语言,比如Cypher,以便返回表示这两棵树之间差异的图形?
DOT示例:
graph A {
a -- b -- c;
}
graph B {
a -- b -- c;
b -- d;
}
graph C = graph B - graph A : // <-- How do I do that?
graph C {
b -- d;
}
答案 0 :(得分:3)
以下junit测试是解决此问题的简单可行方案。 请参阅该算法的注释。 有很多更好的方法可以做到这一点,但这只是表明有解决方案。
package com.graph.test;
import static org.junit.Assert.assertEquals;
import java.util.ArrayList;
import java.util.List;
import org.apache.tinkerpop.gremlin.structure.Direction;
import org.apache.tinkerpop.gremlin.structure.Edge;
import org.apache.tinkerpop.gremlin.structure.Graph;
import org.apache.tinkerpop.gremlin.structure.Vertex;
import org.apache.tinkerpop.gremlin.tinkergraph.structure.TinkerGraph;
import org.junit.Test;
/**
* https://stackoverflow.com/questions/38786038/is-it-possible-to-calculate-difference-between-tree-graphs-in-gremlin
* https://stackoverflow.com/questions/16553343/diff-for-directed-acyclic-graphs
* @author wz
*
* Algorithm:
* Step one: Intersect all vertices and edges of a and b
* Step two: Remove all edges that are the same in a and b
* Step tree: Remove all non connected vertices
*
* Step three is not implemented here and one and two are very inefficient. This
* is just to show the principle and have a viable solution
*
*/
public class TestGraphDiff {
public static final String SORTKEY="sortKey";
public static final String LINK="link";
public Graph getGraph() {
Graph g = TinkerGraph.open();
Vertex a = g.addVertex("a");
Vertex b = g.addVertex("b");
Vertex c = g.addVertex("c");
b.addEdge(LINK,a);
c.addEdge(LINK, b);
return g;
}
@Test
public void testGraphDiff() {
Graph A=getGraph();
Graph B=getGraph();
Vertex d = B.addVertex("d");
Vertex b= B.traversal().V().hasLabel("b").next();
d.addEdge(LINK, b);
Graph C=diff(A,B);
// there should be one edge left
assertEquals(1,C.traversal().E().count().next().longValue());
// there should be two vertices left
assertEquals(2,C.traversal().V().count().next().longValue());
// the left over edge should be "b-d"
assertEquals("b-d",C.traversal().E().next().property(SORTKEY).value().toString());
}
/**
* add a sort key to the given edge
* @param e
* @return - the sort key
*/
private String addSortKey(Edge e) {
String sortKey=e.inVertex().label()+"-"+e.outVertex().label();
e.property(SORTKEY,sortKey);
return sortKey;
}
/**
* get the difference of two Graphs
* @param a
* @param b
* @return
*/
public Graph diff(Graph a, Graph b) {
// step one: intersect both graphs
Graph c= TinkerGraph.open();
// copy all vertices of a
a.traversal().V().forEachRemaining(v->c.addVertex(v.label()));
// copy all edges of a
a.traversal().E().forEachRemaining(e->{
Vertex iva = e.inVertex();
Vertex ova = e.outVertex();
Vertex ivc=c.traversal().V().hasLabel(iva.label()).next();
Vertex ovc=c.traversal().V().hasLabel(ova.label()).next();
addSortKey(e);
Edge edge=ovc.addEdge(e.label(), ivc);
addSortKey(edge);
});
// copy all vertices of b that are not yet in c
b.traversal().V().forEachRemaining(v->{
if (c.traversal().V().hasLabel(v.label()).count().next().longValue()==0) {
c.addVertex(v.label());
}
// copy all edges of b that are not yet in c
b.traversal().E().forEachRemaining(e->{
Vertex ivb = e.inVertex();
Vertex ovb = e.outVertex();
Vertex ivc=c.traversal().V().hasLabel(ivb.label()).next();
Vertex ovc=c.traversal().V().hasLabel(ovb.label()).next();
String sortKey=addSortKey(e);
if (!c.traversal().E().has(SORTKEY,sortKey).hasNext()) {
Edge edge = ovc.addEdge(e.label(), ivc);
addSortKey(edge);
}
});
});
// step two: remove all edges that are "the same" in both graphs
// inefficient version - would be much quicker with sorted lists
// of edges ...
c.traversal().E().forEachRemaining(e->{
String sortKey=e.property(SORTKEY).value().toString();
if (a.traversal().E().has(SORTKEY, sortKey).hasNext() &&
c.traversal().E().has(SORTKEY, sortKey).hasNext()) {
e.remove();
}
});
// step three remove all "unconnected" vertices
c.traversal().V().forEachRemaining(v->{
if (!v.edges(Direction.BOTH).hasNext())
v.remove();
});
return c;
}
}