以下是原始代码:
K = zeros(N*N)
for a=1:N
for i=1:I
for j=1:J
M = kron(X(:,:,a).',Y(:,:,a,i,j));
%A function that essentially adds M to K.
end
end
end
目标是对kroniker乘法调用进行矢量化。我的直觉是将X和Y视为矩阵的容器(作为参考,X和Y的切片被馈送到kron是7x7阶的矩阵)。在此容器方案下,X显示为1-D容器,Y显示为3-D容器。我的下一个猜测是将Y重塑为2-D容器或更好的1-D容器,然后进行X和Y的元素乘法。问题是:如何以保留M和M的轨迹的方式重塑matlab甚至可以在这个容器构思中处理这个想法,还是需要进一步重塑容器以进一步暴露内部矩阵元素?
答案 0 :(得分:7)
方法#1:与6D
置换的矩阵乘法
% Get sizes
[m1,m2,~] = size(X);
[n1,n2,N,n4,n5] = size(Y);
% Lose the third dim from X and Y with matrix-multiplication
parte1 = reshape(permute(Y,[1,2,4,5,3]),[],N)*reshape(X,[],N).';
% Rearrange the leftover dims to bring kron format
parte2 = reshape(parte1,[n1,n2,I,J,m1,m2]);
% Lose dims correspinding to last two dims coming in from Y corresponding
% to the iterative summation as suggested in the question
out = reshape(permute(sum(sum(parte2,3),4),[1,6,2,5,3,4]),m1*n1,m2*n2)
方法#2:简单7D
置换
% Get sizes
[m1,m2,~] = size(X);
[n1,n2,N,n4,n5] = size(Y);
% Perform kron format elementwise multiplication betwen the first two dims
% of X and Y, keeping the third dim aligned and "pushing out" leftover dims
% from Y to the back
mults = bsxfun(@times,permute(X,[4,2,5,1,3]),permute(Y,[1,6,2,7,3,4,5]));
% Lose the two dims with summation reduction for final output
out = sum(reshape(mults,m1*n1,m2*n2,[]),3);
<强>验证强>
这是运行原始方法和建议方法的设置 -
% Setup inputs
X = rand(10,10,10);
Y = rand(10,10,10,10,10);
% Original approach
[n1,n2,N,I,J] = size(Y);
K = zeros(100);
for a=1:N
for i=1:I
for j=1:J
M = kron(X(:,:,a).',Y(:,:,a,i,j));
K = K + M;
end
end
end
% Approach #1
[m1,m2,~] = size(X);
[n1,n2,N,n4,n5] = size(Y);
mults = bsxfun(@times,permute(X,[4,2,5,1,3]),permute(Y,[1,6,2,7,3,4,5]));
out1 = sum(reshape(mults,m1*n1,m2*n2,[]),3);
% Approach #2
[m1,m2,~] = size(X);
[n1,n2,N,n4,n5] = size(Y);
parte1 = reshape(permute(Y,[1,2,4,5,3]),[],N)*reshape(X,[],N).';
parte2 = reshape(parte1,[n1,n2,I,J,m1,m2]);
out2 = reshape(permute(sum(sum(parte2,3),4),[1,6,2,5,3,4]),m1*n1,m2*n2);
跑步后,我们看到最大值。所提出的方法与原始方法的绝对偏差 -
>> error_app1 = max(abs(K(:)-out1(:)))
error_app1 =
1.1369e-12
>> error_app2 = max(abs(K(:)-out2(:)))
error_app2 =
1.1937e-12
价值观对我来说很好!
<强>基准强>
使用与验证相同的大数据集来定时这三种方法,我们得到类似的结果 -
----------------------------- With Loop
Elapsed time is 1.541443 seconds.
----------------------------- With BSXFUN
Elapsed time is 1.283935 seconds.
----------------------------- With MATRIX-MULTIPLICATION
Elapsed time is 0.164312 seconds.
像矩阵乘法似乎对这些大小的数据集做得相当好!