我有一个由矩阵if (_bImageFileOpen == false)
{
byte[] m_byte = new byte[4];
var openFileDialog1 = new System.Windows.Forms.OpenFileDialog();
openFileDialog1.Filter = "Mnist Image file (*.idx3-ubyte)|*.idx3-ubyte";
openFileDialog1.Title = "Open Minist Image File";
if (openFileDialog1.ShowDialog() == DialogResult.OK)
{
_MnistImageFileName = openFileDialog1.FileName;
try
{
load_ImageFile_stream = new System.IO.BinaryReader(openFileDialog1.OpenFile());
//Magic number
load_ImageFile_stream.Read(m_byte, 0, 4);
Array.Reverse(m_byte, 0, 4);
_ImageFileBegin.nMagic = BitConverter.ToInt32(m_byte, 0);
//number of images
load_ImageFile_stream.Read(m_byte, 0, 4);
//High-Endian format to Low-Endian format
Array.Reverse(m_byte, 0, 4);
_ImageFileBegin.nItems = BitConverter.ToInt32(m_byte, 0);
_nItems = (uint)_ImageFileBegin.nItems;
//number of rows
load_ImageFile_stream.Read(m_byte, 0, 4);
Array.Reverse(m_byte, 0, 4);
_ImageFileBegin.nRows = BitConverter.ToInt32(m_byte, 0);
//number of columns
load_ImageFile_stream.Read(m_byte, 0, 4);
Array.Reverse(m_byte, 0, 4);
_ImageFileBegin.nCols = BitConverter.ToInt32(m_byte, 0);
_bImageFileOpen = true;
return true;
}
catch
{
_bImageFileOpen = false;
return false;
}
}
return false;
}
return true;
sigma
计算向量计算的范数
sigma <- matrix(c(1,0.5,0,0.5,1,0,0,0,1),3,3))
适用于矢量,例如t(x) %*% sigma %*% x
。
但是我想同时计算许多向量的范数,就是我有
x = 1:3
(当然填写了不同的条目)。
有没有办法同时计算每个向量的范数? 即
之类的东西x <- t(matrix(rep(1:3, 10),3,10))
答案 0 :(得分:3)
你可以这样做:
sigma <- matrix(c(1,0.5,0,0.5,1,0,0,0,1),3,3)
x <- t(matrix(rep(1:3, 10),3,10))
mynorm <- function(x, sig) t(x) %*% sig %*% x
apply(x, 1, mynorm, sig=sigma)
以下是tcrossprod()
的变体:
mynorm <- function(x, sig) tcrossprod(x, sig) %*% x
apply(x, 1, mynorm, sig=sigma)
以下是基准测试(包括来自compute only diagonals of matrix multiplication in R的解决方案的变体,感谢@Benjamin的链接):
mynorm1 <- function(x, sig) t(x) %*% sig %*% x
mynorm2 <- function(x, sig) tcrossprod(x, sig) %*% x
microbenchmark(n1=apply(x, 1, mynorm1, sig=sigma),
n2=apply(x, 1, mynorm2, sig=sigma),
n3 = colSums(t(x) * (sigma %*% t(x))),
n4 = rowSums(x * t(sigma %*% t(x))),
n5 = rowSums(x * (x %*% t(sigma) )),
n6 = rowSums(x * tcrossprod(x, sigma)),
Eugen1 = diag(x %*% sigma %*% t(x)),
Eugen2 = diag(x %*% tcrossprod(sigma, x)),
unit="relative")
答案 1 :(得分:2)
您如何看待这种简单的矩阵乘法:
diag(t(x) %*% sigma %*% x)
编辑:在矩阵乘法之后,你需要对角线(当然)。
然后它比应用
的解决方案更快答案 2 :(得分:2)
这应该
> sigma <- matrix(c(1,0.5,0,0.5,1,0,0,0,1),3,3)
> x <- t(matrix(rep(1:30, 10),3,10))
>
> # should give
> t(x[1, ]) %*% sigma %*% x[1, ]
[,1]
[1,] 16
> t(x[2, ]) %*% sigma %*% x[2, ]
[,1]
[1,] 97
>
> # which you can get by
> rowSums((x %*% sigma) * x)
[1] 16 97 250 475 772 1141 1582 2095 2680 3337