我试图为识别问题生成自己的训练数据。我有两个文件夹s0和s1,包含的文件夹是数据。图片,标签是两个列表,其中标签包含文件夹的名称。
data
|—- s0
| |—- 1.pgm
| |—- 2.pgm
| |—- ...
|—- s1
| |—- 1.pgm
| |—- 2.pgm
| |—- ...
以下是代码,它在classifier.fit(images, lables)
行显示以下错误
Traceback (most recent call last):
File "mint.py", line 34, in <module>
classifier.fit(images, lables)
File "/usr/local/lib/python2.7/dist-packages/sklearn/svm/base.py", line 150, in fit
X = check_array(X, accept_sparse='csr', dtype=np.float64, order='C')
File "/usr/local/lib/python2.7/dist- packages/sklearn/utils/validation.py", line 396, in check_array
% (array.ndim, estimator_name))
ValueError: Found array with dim 3. Estimator expected <= 2. here
代码:
import os,sys
import cv2
import numpy as np
from sklearn.svm import SVC
fn_dir ='/home/aquib/Desktop/Natural/data'
# Create a list of images and a list of corresponding names
(images, lables, names, id) = ([], [], {}, 0)
for (subdirs, dirs, files) in os.walk(fn_dir):
for subdir in dirs:
names[id] = subdir
mypath = os.path.join(fn_dir, subdir)
for item in os.listdir(mypath):
if '.png' in item:
label=id
image = cv2.imread(os.path.join(mypath, item),0)
r_image = np.resize(image,(30,30))
if image is not None:
images.append(r_image)
lables.append(int(label))
id += 1
# Create a Numpy array from the two lists above
(images, lables) = [np.array(lis) for lis in [images, lables]]
classifier = SVC(verbose=0, kernel='poly', degree=3)
classifier.fit(images, lables)
我真的不明白如何在二维中纠正它。我正在尝试以下方法,但错误是一样的:
images = np.array(images)
im_sq = np.squeeze(images).shape
images = images.reshape(images.shape[:2])