我正在尝试为识别问题生成自己的训练数据。我有两个文件夹s0
和s1
,文件夹包含data
。
images
,lables
是labels
包含文件夹名称的两个列表。
|—- data
| |—- s0
| | |—- 1.pgm
| | |—- 2.pgm
| | |—- 3.pgm
| | |—- 4.pgm
| | |—- ...
| |—- s1
| | |—- 1.pgm
| | |—- 2.pgm
| | |—- 3.pgm
| | |—- 4.pgm
| | |—- ...
下面是代码,它在classifier.fit(images, lables)
Traceback (most recent call last):
File "mint.py", line 34, in <module>
classifier.fit(images, lables)
File "/usr/local/lib/python2.7/dist-packages/sklearn/svm/base.py", line 150, in fit
X = check_array(X, accept_sparse='csr', dtype=np.float64, order='C')
File "/usr/local/lib/python2.7/dist- packages/sklearn/utils/validation.py", line 396, in check_array
% (array.ndim, estimator_name))
ValueError:找到带有暗淡的数组3.估计的估计量&lt; = 2。 这里
import os,sys
import cv2
import numpy as np
from sklearn.svm import SVC
fn_dir ='/home/aquib/Desktop/Natural/data'
# Create a list of images and a list of corresponding names
(images, lables, names, id) = ([], [], {}, 0)
for (subdirs, dirs, files) in os.walk(fn_dir):
for subdir in dirs:
names[id] = subdir
mypath = os.path.join(fn_dir, subdir)
for item in os.listdir(mypath):
if '.png' in item:
label=id
image = cv2.imread(os.path.join(mypath, item),0)
r_image = np.resize(image,(30,30))
if image is not None:
images.append(r_image)
lables.append(int(label))
id += 1
#Create a Numpy array from the two lists above
(images, lables) = [np.array(lis) for lis in [images, lables]]
classifier = SVC(verbose=0, kernel='poly', degree=3)
classifier.fit(images, lables)
我真的不明白如何在二维中纠正它。
我正在尝试以下代码,但错误是相同的:
images = np.array(images)
im_sq = np.squeeze(images).shape
images = images.reshape(images.shape[:2])
答案 0 :(得分:0)
代码中while ((r = read(fd, buf, BUFF_SIZE)) > 0) {
if ((write(STDOUT_FILENO, buf, r)) == -1) { // the fixed line
perror(argv[i]);
return EXIT_FAILURE;
} // if
} // while
最后一行有语法错误。括号未正确关闭。所以它应该像这样images.append(cv2.imread((path, 0))
。发布错误的回溯总是一件好事,这样任何人都可以轻松回答。