基于Neo4j
的示例from neo4j.v1 import GraphDatabase, basic_auth
driver = GraphDatabase.driver("bolt://localhost", auth=basic_auth("neo4j", "neo4j"))
session = driver.session()
session.run("CREATE (a:Person {name:'Arthur', title:'King'})")
result = session.run("MATCH (a:Person) WHERE a.name = 'Arthur' RETURN a.name AS name, a.title AS title")
for record in result:
print("%s %s" % (record["title"], record["name"]))
session.close()
此处result
的数据类型为neo4j.v1.session.StatementResult
。如何在pandas数据框中访问此数据而不显式迭代?
pd.DataFrame.from_records(result)
似乎没有帮助。
这就是我使用列表理解
resultlist = [[record['title'], record['name']] for record in result]
pd.DataFrame.from_records(resultlist, columns=['title', 'name'])
答案 0 :(得分:5)
我能想到的最好的是与你的类似的列表理解,但不那么冗长:
df = pd.DataFrame([r.values() for r in result], columns=result.keys())
py2neo
包似乎更适合DataFrames,因为返回词典列表相当简单。这是使用py2neo
的等效代码:
import py2neo
# Some of these keyword arguments are unnecessary, as they are the default values.
graph = py2neo.Graph(bolt=True, host='localhost', user='neo4j', password='neo4j')
graph.run("CREATE (a:Person {name:'Arthur', title:'King'})")
query = "MATCH (a:Person) WHERE a.name = 'Arthur' RETURN a.name AS name, a.title AS title"
df = pd.DataFrame(graph.data(query))
答案 1 :(得分:2)
将结果记录转换为字典可以解决问题:
df = pd.DataFrame([dict(record) for record in result])
答案 2 :(得分:1)
那又怎么样:
from neo4j.v1 import GraphDatabase
from pandas import DataFrame
uri = "bolt://localhost:7687"
driver = GraphDatabase.driver(uri, auth=("",""))
get_instances = """MATCH (n)--(m)
RETURN n
LIMIT 10
"""
with driver.session() as graphDB_Session:
result = graphDB_Session.run(get_instances)
df = DataFrame(result, columns=result.keys())
为我工作。
答案 3 :(得分:0)
在V4
的{{1}}中,转换为pandas DataFrame更加容易。
py2neo