假设您有一个带有MultiIndex的Panda DataFrame。您希望获得具有特定值标签的所有行。你是怎么做到的?
我的第一个想法是一个布尔掩码......
df[df.index.labels == 1].head()
但这不起作用。
谢谢!
答案 0 :(得分:2)
您需要指定您使用的索引。在我的例子中,我采用了第二个索引(我的数据帧是s,因为它在Pandas的Multiindex页面中是这样的):
s[s.index.labels[1]==1]
如果键入以下内容,您实际上可以看到索引是如何构建的:
s.index
得到的结构是:
MultiIndex(levels=[['bar', 'baz', 'foo', 'qux'], [1, 2]],
labels=[[0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 0, 1, 0, 1, 0, 1]],
names=['first', 'second'])
下面我有完整的代码:
>>> import pandas as pd
>>> import numpy as np
>>> arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
... [1, 2, 1, 2, 1, 2, 1, 2]]
...
>>> tuples = list(zip(*arrays))
>>> index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
>>> s = pd.Series(np.random.randn(8), index=index)
>>> s[s.index.labels[1]==1]
first second
bar 2 -0.304029
baz 2 -1.216370
foo 2 1.401905
qux 2 -0.411468
dtype: float64
答案 1 :(得分:2)
我会使用xs
(cross-section):
In [11]: df = pd.DataFrame([[1, 2, 3], [3, 4, 5]], columns=list("ABC")).set_index(["A", "B"])
In [12]: df
Out[12]:
C
A B
1 2 3
3 4 5
然后你可以把等级A等于1的那些:
In [13]: df.xs(key=1, level="A")
Out[13]:
C
B
2 3
使用drop_level=False
进行过滤(不丢弃A索引):
In [14]: df.xs(key=1, level="A", drop_level=False)
Out[14]:
C
A B
1 2 3
答案 2 :(得分:1)
替代解决方案:
In [62]: df = pd.DataFrame({'idx1': ['A','B','C'], 'idx2':[1,2,3], 'val': [30,10,20]}).set_index(['idx1','idx2'])
In [63]: df
Out[63]:
val
idx1 idx2
A 1 30
B 2 10
C 3 20
In [64]: df[df.index.get_level_values('idx2') == 2]
Out[64]:
val
idx1 idx2
B 2 10
In [65]: df[df.index.get_level_values(1) == 2]
Out[65]:
val
idx1 idx2
B 2 10