我在使用蘑菇数据集处理C5.0时遇到错误。我已经考虑了目标类,并且没有缺失值。
f <-file("https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data", open="r")
data <- read.table(f, sep=",", header=F)
str(data)
给出
'data.frame': 8124 obs. of 23 variables:
$ V1 : Factor w/ 2 levels "e","p": 2 1 1 2 1 1 1 1 2 1 ...
$ V2 : Factor w/ 6 levels "b","c","f","k",..: 6 6 1 6 6 6 1 1 6 1 ...
$ V3 : Factor w/ 4 levels "f","g","s","y": 3 3 3 4 3 4 3 4 4 3 ...
$ V4 : Factor w/ 10 levels "b","c","e","g",..: 5 10 9 9 4 10 9 9 9 10 ...
$ V5 : Factor w/ 2 levels "f","t": 2 2 2 2 1 2 2 2 2 2 ...
$ V6 : Factor w/ 9 levels "a","c","f","l",..: 7 1 4 7 6 1 1 4 7 1 ...
$ V7 : Factor w/ 2 levels "a","f": 2 2 2 2 2 2 2 2 2 2 ...
$ V8 : Factor w/ 2 levels "c","w": 1 1 1 1 2 1 1 1 1 1 ...
$ V9 : Factor w/ 2 levels "b","n": 2 1 1 2 1 1 1 1 2 1 ...
$ V10: Factor w/ 12 levels "b","e","g","h",..: 5 5 6 6 5 6 3 6 8 3 ...
$ V11: Factor w/ 2 levels "e","t": 1 1 1 1 2 1 1 1 1 1 ...
$ V12: Factor w/ 5 levels "?","b","c","e",..: 4 3 3 4 4 3 3 3 4 3 ...
$ V13: Factor w/ 4 levels "f","k","s","y": 3 3 3 3 3 3 3 3 3 3 ...
$ V14: Factor w/ 4 levels "f","k","s","y": 3 3 3 3 3 3 3 3 3 3 ...
$ V15: Factor w/ 9 levels "b","c","e","g",..: 8 8 8 8 8 8 8 8 8 8 ...
$ V16: Factor w/ 9 levels "b","c","e","g",..: 8 8 8 8 8 8 8 8 8 8 ...
$ V17: Factor w/ 1 level "p": 1 1 1 1 1 1 1 1 1 1 ...
$ V18: Factor w/ 4 levels "n","o","w","y": 3 3 3 3 3 3 3 3 3 3 ...
$ V19: Factor w/ 3 levels "n","o","t": 2 2 2 2 2 2 2 2 2 2 ...
$ V20: Factor w/ 5 levels "e","f","l","n",..: 5 5 5 5 1 5 5 5 5 5 ...
$ V21: Factor w/ 9 levels "b","h","k","n",..: 3 4 4 3 4 3 3 4 3 3 ...
$ V22: Factor w/ 6 levels "a","c","n","s",..: 4 3 3 4 1 3 3 4 5 4 ...
$ V23: Factor w/ 7 levels "d","g","l","m",..: 6 2 4 6 2 2 4 4 2 4 ...
当我跑
时C5.model <- C5.0(data[1:4000,-1],data[1:4000,1],trials = 3)
给出
c50 code called exit with value 1
我不知道如何找到这个。任何有关调试的想法都表示赞赏
Edit1:错误相同,但解决方案不同。 注意:当我更改数据集时,它正在工作。
答案 0 :(得分:0)
f <-file("https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data", open="r")
data <- read.table(f, sep=",", header=F)
str(data)
pacman::p_load(C50)
C5.model <- C5.0(data[1:10000,c(2:16,18:23)],data[1:10000,1],trials = 3,na.action = na.pass)
第17列是导致此问题的原因,因为它没有识别变异。