我尝试直接从tensorflow' Deep and Wide demo repo运行代码:
urllib
存在即时问题,可以使用urllib.request
轻松修复。之后代码仍然无法运行,我收到以下错误:
m.fit(input_fn=lambda: input_fn(df_train), steps=FLAGS.train_steps)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Users/USER/tensorflow/lib/python3.5/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 182, in fit
monitors=monitors)
File "/Users/USER/tensorflow/lib/python3.5/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 449, in _train_model
train_op, loss_op = self._get_train_ops(features, targets)
File "/Users/USER/tensorflow/lib/python3.5/site-packages/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py", line 156, in _get_train_ops
logits = self._logits(features, is_training=True)
File "/Users/USER/tensorflow/lib/python3.5/site-packages/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py", line 294, in _logits
if self._get_linear_feature_columns() and self._get_dnn_feature_columns():
File "/Users/USER/tensorflow/lib/python3.5/site-packages/tensorflow/contrib/learn/python/learn/estimators/dnn_linear_combined.py", line 216, in _get_dnn_feature_columns
self._dnn_feature_columns)) if self._dnn_feature_columns else None
TypeError: unorderable types: str() < _SparseColumnKeys()
我无法找到此问题的根源。似乎没有其他人遇到过这个问题。 Tensorflow安装在python 3.5上的virtualenv(tensorflow)中。
答案 0 :(得分:0)
urllib适用于2.7,尝试在2.7而不是3.5中运行它。
答案 1 :(得分:0)
我有同样的问题。这解决了它。
我必须在Python 2.7下安装Tensorflow。以下是使用Conda:
在虚拟环境中如何做到这一点# Python 2.7
$ conda create -n tensorflow python=2.7
$ source activate tensorflow
(tensorflow)$ # Your prompt should change
# Linux/Mac OS X, Python 2.7/3.4/3.5, CPU only:
(tensorflow)$ conda install -c conda-forge tensorflow
退房:https://www.tensorflow.org/versions/r0.10/get_started/os_setup.html#using-conda