如何在张量流中置换转换?

时间:2016-07-22 03:09:51

标签: python numpy tensorflow permutation transpose

来自docs

  

转置a。根据烫发置换尺寸。

     

返回张量的维度i将对应于输入   维度perm[i]。如果未给出perm,则将其设置为(n-1 ... 0),其中   n是输入张量的等级。因此默认情况下,此操作   在二维输入张量上执行常规矩阵转置。

但是我仍然有点不清楚我应该如何切割输入张量。例如。来自文档:

tf.transpose(x, perm=[0, 2, 1]) ==> [[[1  4]
                                      [2  5]
                                      [3  6]]

                                     [[7 10]
                                      [8 11]
                                      [9 12]]]

为什么perm=[0,2,1]产生1x3x2张量?

经过一些试验和错误:

twothreefour = np.array([ [[1,2,3,4], [5,6,7,8], [9,10,11,12]] , 
                        [[13,14,15,16], [17,18,19,20], [21,22,23,24]] ])
twothreefour

[OUT]:

array([[[ 1,  2,  3,  4],
        [ 5,  6,  7,  8],
        [ 9, 10, 11, 12]],

       [[13, 14, 15, 16],
        [17, 18, 19, 20],
        [21, 22, 23, 24]]])

如果我转置它:

fourthreetwo = tf.transpose(twothreefour) 
with tf.Session() as sess:
    init = tf.initialize_all_variables()
    sess.run(init)
    print (fourthreetwo.eval())

我得到4x3x2到2x3x4,这听起来合乎逻辑。

[OUT]:

[[[ 1 13]
  [ 5 17]
  [ 9 21]]

 [[ 2 14]
  [ 6 18]
  [10 22]]

 [[ 3 15]
  [ 7 19]
  [11 23]]

 [[ 4 16]
  [ 8 20]
  [12 24]]]

但是当我使用perm参数输出时,我不确定我真正得到的是什么:

twofourthree = tf.transpose(twothreefour, perm=[0,2,1]) 
with tf.Session() as sess:
    init = tf.initialize_all_variables()
    sess.run(init)
    print (threetwofour.eval())

[OUT]:

[[[ 1  5  9]
  [ 2  6 10]
  [ 3  7 11]
  [ 4  8 12]]

 [[13 17 21]
  [14 18 22]
  [15 19 23]
  [16 20 24]]]

为什么perm=[0,2,1]会从2x3x4返回2x4x3矩阵?

使用perm=[1,0,2]再次尝试:

threetwofour = tf.transpose(twothreefour, perm=[1,0,2]) 
with tf.Session() as sess:
    init = tf.initialize_all_variables()
    sess.run(init)
    print (threetwofour.eval())

[OUT]:

[[[ 1  2  3  4]
  [13 14 15 16]]

 [[ 5  6  7  8]
  [17 18 19 20]]

 [[ 9 10 11 12]
  [21 22 23 24]]]

为什么perm=[1,0,2]会从2x3x4返回3x2x4?

这是否意味着perm参数正在使用我的np.shape并根据基于数组形状的元素转置张量?

即。 :

_size = (2, 4, 3, 5)
randarray = np.random.randint(5, size=_size)

shape_idx = {i:_s for i, _s in enumerate(_size)}

randarray_t_func = tf.transpose(randarray, perm=[3,0,2,1]) 
with tf.Session() as sess:
    init = tf.initialize_all_variables()
    sess.run(init)
    tranposed_array = randarray_t_func.eval()
    print (tranposed_array.shape)

print (tuple(shape_idx[_s] for _s in [3,0,2,1]))

[OUT]:

(5, 2, 3, 4)
(5, 2, 3, 4)

2 个答案:

答案 0 :(得分:28)

我认为perm正在排列维度。例如,perm=[0,2,1]dim_0 -> dim_0, dim_1 -> dim_2, dim_2 -> dim_1的缩写。因此对于2D张量,perm=[1,0]只是矩阵转置。这是否回答了你的问题?

答案 1 :(得分:2)

A=[2,3,4] matrix, using perm(1,0,2) will get B=[3,2,4].

说明:

Index=(0,1,2)
A    =[2,3,4]
Perm =(1,0,2)
B    =(3,2,4)  --> Perm 1 from Index 1 (3), Perm 0 from Index 0 (2), Perm 2 from Index 2 (4) --> so get (3,2,4)