我想计算C
量的n
测量值的协方差p
,其中每个单独的数量测量值都有自己的权重。也就是说,我的体重数组W
与数量数组Q
(n
p
)具有相同的形状。原生np.cov()
函数仅支持给予各个度量的权重(即长度为n
的向量)。
我可以通过p
矩阵初始化p
并进行迭代,但如果p
很大,那么这是一个非常缓慢的过程。
由于已知Q
每个数量的均值为零(Q
的列),因此C
的每个元素的显式公式为
C[i,j] = np.sum(
Q[:, i] * Q[:, j] * W[:, i] * W[:, j]) / np.sum(W[:, i] * W[:, j])
如果我将分子重新排列为Q[:, i] * W[:, i] * Q[:, j] * W[:, j]
,似乎我应该能够乘以Q * W
的列并对其进行求和,然后类似地进行分母(除了使用W * W
)
有没有办法用np.einsum()
执行此操作?
为了进行测试,我们定义以下内容:
C = array([[ 1. , 0.1 , 0.2 ], # set this beforehand, to test whether
[ 0.1 , 0.5 , 0.15], # we get the correct result
[ 0.2 , 0.15, 0.75]])
Q = array([[-0.6084634 , 0.16656143, -1.04490324],
[-1.51164337, -0.96403094, -2.37051952],
[-0.32781346, -0.19616374, -1.32591578],
[-0.88371729, 0.20877833, -0.52074272],
[-0.67987913, -0.84458226, 0.02897935],
[-2.01924756, -0.51877396, -0.68483981],
[ 1.64600477, 0.67620595, 1.24559591],
[ 0.82554885, 0.14884613, -0.15211434],
[-0.88119527, 0.11663335, -0.31522598],
[-0.14830668, 1.26906561, -0.49686309]])
W = array([[ 1.01133857, 0.91962164, 1.01897898],
[ 1.09467975, 0.91191381, 0.90150961],
[ 0.96334661, 1.00759046, 1.01638749],
[ 1.04827001, 0.95861001, 1.01248969],
[ 0.91572506, 1.09388218, 1.03616461],
[ 0.9418178 , 1.07210878, 0.90431879],
[ 1.0093642 , 1.00408472, 1.07570172],
[ 0.92203074, 1.00022631, 1.09705542],
[ 0.99775598, 0.01000000, 0.94996408],
[ 1.02996389, 1.01224303, 1.00331465]])
答案 0 :(得分:1)
经过一些实验,我发现以下工作:
A = np.einsum('ki,kj->ij', Q*W, Q*W)
B = np.einsum('ki,kj->ij', W, W)
C = A/B
答案 1 :(得分:1)
您可以使用np.dot
-
QW = Q*W
C = QW.T.dot(QW)/W.T.dot(W)