I'm feeding to tensorflow computation(train) graph using input queue and
tf.train.batch
function that prepares huge tensor with data.
I have another queue with test data I would like to feed to graph every 50th step.
Given the form of the input (tensors) do I have to define separate test graph for test data computation or I can somehow reuse train grap?
# Prepare data
batch = tf.train.batch([train_image, train_label], batch_size=200)
batchT = tf.train.batch([test_image, test_label], batch_size=200)
x = tf.reshape(batch[0], [-1, IMG_SIZE, IMG_SIZE, 3])
y_ = batch[1]
xT = tf.reshape(batchT[0], [-1, IMG_SIZE, IMG_SIZE, 3])
y_T = batchT[1]
# Graph definition
train_step = ... # train_step = g(x)
# Session
sess = tf.Session()
sess.run(tf.initialize_all_variables())
for i in range(1000):
if i%50 == 0:
# here i would like reuse train graph but with tensor x replaced by x_t
# train_accuracy = ?
# print("step %d, training accuracy %g"%(i, train_accuracy))
train_step.run(session=sess)
I would use placeholders but I can't feed tf.placeholder
with tf.Tensors
and this is the thing I'm getting from queues.
How is it supposed to be done?
I'm really just starting.
答案 0 :(得分:2)
在MNIST example中查看如何完成此操作:您需要使用占位符,其中包含数据的非张量形式的初始化程序(如文件名或CSV),然后在图形内部,使用slice_input_producer - > deocde_jpeg(或其他......) - > tf.train.batch()用于创建批次并将其提供给计算图。
所以你的图表看起来像:
tf.slice_input_producer
tf.image.decode_jpeg
或tf.py_func
- 加载实际数据tf.train.batch
- 创建用于培训的小批量