我一直在尝试优化以下两个嵌套循环:
def startbars(query_name, commodity_name):
global h_list
nc, s, h_list = [], {}, {}
query = """ SELECT wbcode, Year, """+query_name+"""
FROM innovotable WHERE commodity='"""+commodity_name+"""' and
"""+query_name+""" != 'NULL' """
rows = cursor.execute(query)
for row in rows:
n = float(row[2])
s[str(row[0])+str(row[1])] = n
nc.append(n)
for iso in result:
try:
for an_year in xrange(1961, 2031, 1):
skey = iso+str(an_year)
h_list[skey] = 8.0 / max(nc) * s[skey]
except:
pass
有什么想法吗?感谢。
答案 0 :(得分:5)
您的代码不完整,但很难提出好的建议,但是:
此外,您需要知道当前代码有多慢,以及您需要多快,否则您的优化可能会放错位置。
您的数据结构全都搞砸了。也许某些列表会更快:
def startbars(query_name, commodity_name):
assert query_name in INNOVOTABLE_FIELD_NAMES
## TODO: Replace with proper SQL query
query = """ SELECT wbcode, Year, """+query_name+"""
FROM innovotable WHERE commodity='"""+commodity_name+"""' and
"""+query_name+""" != 'NULL' """
rows = cursor.execute(query)
mapYearToWbcodeToField = {}
nc = []
global h_list
h_list = {}
for row in rows:
n = float(row[2])
wbCodeToField = mapYearToWbcodeToField.setdefault(int(row[1]),{})
wbCodeToField[str(row[0])] = n
nc.append(n)
constant = 8.0 / max(nc)
for (an_year,wbCodeToField) in mapYearToWbcodeToField.iteritems():
if an_year < 1961 or an_year > 2031:
continue
for (wbCode,value) in wbCodeToField.iteritems():
if wbCode not in result:
continue
skey = wbCode+str(an_year)
h_list[skey] = constant * value
或者将所有支票移入第一个循环:
def startbars(query_name, commodity_name):
assert query_name in INNOVOTABLE_FIELD_NAMES
## TODO: Replace with proper SQL query
query = """ SELECT wbcode, Year, """+query_name+"""
FROM innovotable WHERE commodity='"""+commodity_name+"""' and
"""+query_name+""" != 'NULL' """
rows = cursor.execute(query)
data = []
maxField = None
for row in rows:
an_year = int(row[1])
if an_year < 1961 or an_year > 2031:
continue
wbCode = str(row[0])
if wbCode not in result:
continue
n = float(row[2])
data.append((wbCode+str(an_year),n))
if maxField is None or n > maxField:
maxField = n
constant = 8.0 / maxField
global h_list
h_list = {}
for (skey,n) in data:
h_list[skey] = constant * n