我有以下代码,一个基于BaseEstimator和ClassifierMixin在python中应用sklearn的非常简单的模型。它旨在报告城市的预测分数(y)(X)。在这里,作为一个简单的模型,我只希望它能够在城市被召唤时报告城市的平均得分作为其预测值。
class MeanClassifier(BaseEstimator, ClassifierMixin):
def __inif__(self):
self.cityid_ = []
self.cntX = []
def X3(self, X):
self.cityid_, idx = np.unique(X, return_inverse = True)
self.cntX = map(list(self.cityid_).index, X)
return self.cntX
def fit(self, X, y):
self.meanclasses_, meanindicies = np.unique(y, return_inverse = True)
self.cityid_, idx = np.unique(X, return_inverse = True)
self.df = pd.DataFrame({"X":X, "y":y})
self.mean_ = self.df.groupby(['X'].mean())
def predict(self, X):
return self.df['y']['X']
要使用该课程,我有B,其中城市是一个城市列表,在课堂上作为X和星星作为y。
B = MeanClassifier()
asncityid = city
B.fit(asncityid, stars)
pred = B.predict(asncityid[2]) #use the third city in the city list for prediction
print(pred)
当我运行此代码时,收到以下错误
`File "ml2_cp.py", line 66, in <module>
pred = B.predict(asncityid[2])
File "ml2_cp.py", line 58, in predict
return self.df['y']['X'] ## using sklearn requires all X inputs
File "/opt/conda/lib/python2.7/site-packages/pandas/core/series.py", line 583, in __getitem__
result = self.index.get_value(self, key)
File "/opt/conda/lib/python2.7/site-packages/pandas/indexes/base.py", line 1980, in get_value
tz=getattr(series.dtype, 'tz', None))
File "pandas/index.pyx", line 103, in pandas.index.IndexEngine.get_value (pandas/index.c:3332)
File "pandas/index.pyx", line 111, in pandas.index.IndexEngine.get_value (pandas/index.c:3035)
File "pandas/index.pyx", line 161, in pandas.index.IndexEngine.get_loc (pandas/index.c:4084)
KeyError: 'X'`
我很困惑,但是,如何在def predict(self, X)
中留下整个X列表我确信我的编写方式不正确,因为我也有y
。请让我知道任何可能的解决方案,如果不清楚,我想进一步解释我的代码和问题。非常感谢你。
答案 0 :(得分:1)
我想也许你想拥有
self.mean_ = self.df.groupby(['X']).mean()
而不是
self.mean_ = self.df.groupby(['X'].mean())
和
return self.mean_.ix[X].values
而不是
return self.df['y']['X']