我实现了Caffe C++ example的修改版本,虽然效果非常好,但速度极慢,因为它只能逐个接受图片。理想情况下,我想向Caffe传递200幅图像的矢量,并为每一幅图像返回最佳预测。我收到了一些great help from Fanglin Wang并实施了他的一些建议,但我仍然在解决如何从每个图像中检索最佳结果时遇到一些麻烦。
现在,Classify方法传递了cv::Mat
个对象(变量input_channels
)的向量,这是一个灰度浮点图像的向量。我已经删除了代码中的预处理方法,因为我不需要将这些图像转换为浮点或减去平均图像。我也试图摆脱N
变量,因为我只想返回每个图像的最高预测和概率。</ p>
#include "Classifier.h"
using namespace caffe;
using std::string;
Classifier::Classifier(const string& model_file, const string& trained_file, const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs, const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const std::vector<cv::Mat> &input_channels) {
std::vector<float> output = Predict(input_channels);
std::vector<int> maxN = Argmax(output, 1);
int idx = maxN[0];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
return predictions;
}
std::vector<float> Classifier::Predict(const std::vector<cv::Mat> &input_channels, int num_images) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(num_images, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
WrapInputLayer(&input_channels);
net_->ForwardPrefilled();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
const float* begin = output_layer->cpu_data();
const float* end = begin + num_images * output_layer->channels();
return std::vector<float>(begin, end);
}
/* Wrap the input layer of the network in separate cv::Mat objects (one per channel). This way we save one memcpy operation and we don't need to rely on cudaMemcpy2D. The last preprocessing operation will write the separate channels directly to the input layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels() * num_images; ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
更新
非常感谢你的帮助Shai,我做了你推荐的修改,但似乎得到了一些奇怪的编译问题我无法解决(我设法解决了一些问题)。 / p>
以下是我所做的更改:
标题文件:
#ifndef __CLASSIFIER_H__
#define __CLASSIFIER_H__
#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;
class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& label_file);
std::vector< std::pair<int,float> > Classify(const std::vector<cv::Mat>& img);
private:
std::vector< std::vector<float> > Predict(const std::vector<cv::Mat>& img, int nImages);
void WrapInputLayer(std::vector<cv::Mat>* input_channels, int nImages);
void Preprocess(const std::vector<cv::Mat>& img,
std::vector<cv::Mat>* input_channels, int nImages);
private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
std::vector<string> labels_;
};
#endif /* __CLASSIFIER_H__ */
班级档案:
#define CPU_ONLY
#include "Classifier.h"
using namespace caffe; // NOLINT(build/namespaces)
using std::string;
Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif
/* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file);
CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
Blob<float>* input_layer = net_->input_blobs()[0];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == 3 || num_channels_ == 1)
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height());
/* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line));
Blob<float>* output_layer = net_->output_blobs()[0];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
}
static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
}
/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = 0; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
std::vector<int> result;
for (int i = 0; i < N; ++i)
result.push_back(pairs[i].second);
return result;
}
std::vector< std::pair<int,float> > Classifier::Classify(const std::vector<cv::Mat>& img) {
std::vector< std::vector<float> > output = Predict(img, img.size());
std::vector< std::pair<int,float> > predictions;
for ( int i = 0 ; i < output.size(); i++ ) {
std::vector<int> maxN = Argmax(output[i], 1);
int idx = maxN[0];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
}
return predictions;
}
std::vector< std::vector<float> > Classifier::Predict(const std::vector<cv::Mat>& img, int nImages) {
Blob<float>* input_layer = net_->input_blobs()[0];
input_layer->Reshape(nImages, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape();
std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels, nImages);
Preprocess(img, &input_channels, nImages);
net_->ForwardPrefilled();
/* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
std::vector <std::vector<float> > ret;
for (int i = 0; i < nImages; i++) {
const float* begin = output_layer->cpu_data() + i*output_layer->channels();
const float* end = begin + output_layer->channels();
ret.push_back( std::vector<float>(begin, end) );
}
return ret;
}
/* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels, int nImages) {
Blob<float>* input_layer = net_->input_blobs()[0];
int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = 0; i < input_layer->channels()* nImages; ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
}
void Classifier::Preprocess(const std::vector<cv::Mat>& img,
std::vector<cv::Mat>* input_channels, int nImages) {
for (int i = 0; i < nImages; i++) {
vector<cv::Mat> channels;
cv::split(img[i], channels);
for (int j = 0; j < channels.size(); j++){
channels[j].copyTo((*input_channels)[i*num_channels_[0]+j]);
}
}
}
答案 0 :(得分:10)
如果我正确理解了您的问题,您输入$result = array();
$content = preg_replace_callback('~\((\d+)%\)~', function ($m) use (&$result) {
// here __^
$percentage = $m[1]/100;
return "|".$percentage;
}, $content);
echo trim($content);
张图片,期待n
对n
,但只能获得一对此类图片。
我相信这些修改应该适合你:
(label, prob)
应返回Classifier::Predict
,即每个输入图像的概率向量。这是大小为vector< vector<float> >
的<{1}}大小vector
:
n
在output_layer->channels()
中,您需要独立处理每个std::vector< std::vecot<float> >
Classifier::Predict(const std::vector<cv::Mat> &input_channels,
int num_images) {
// same code here...
/* changes here: Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[0];
std::vector< std::vector<float> > ret;
for ( int i = 0 ; i < num_images ; i++ ) {
const float* begin = output_layer->cpu_data() + i*output_layer->channels();
const float* end = begin + output_layer->channels();
ret.push_back( std::vector<float>(begin, end) );
}
return ret;
}
到Classifier::Classify
:
vector<float>
答案 1 :(得分:4)
不幸的是,我不相信已经实现了网络转发通行证的并行化。但是,如果您希望您可以简单地实现自己的包装器,以便通过网络副本重复运行数据,并行?
查看How many images can you pass to Caffe at a time?
在链接的原型文件中,您需要定义的是
input_shape {
dim: 64 // num of images
dim: 1
dim: 28 // height
dim: 28 // width
}
现有实现评估一批64个图像,但不一定是并行的。但是,如果在GPU上运行,处理一批64个批处理将比64个单图像批处理更快。