我想将下面的字符串变量转换为spark上的数据帧。
val jsonStr = "{ "metadata": { "key": 84896, "value": 54 }}"
我知道如何从json文件创建数据框。
sqlContext.read.json("file.json")
但我不知道如何从字符串变量创建数据框。
如何将json String变量转换为dataframe。
答案 0 :(得分:38)
import spark.implicits._
val jsonStr = """{ "metadata": { "key": 84896, "value": 54 }}"""
val df = spark.read.json(Seq(jsonStr).toDS)
val events = sc.parallelize("""{"action":"create","timestamp":"2016-01-07T00:01:17Z"}""" :: Nil)
val df = sqlContext.read.json(events)
提示:这是使用
sqlContext.read.json(jsonRDD: RDD[Stirng])
重载。 还有sqlContext.read.json(path: String)
,它直接读取Json文件。
val jsonStr = """{ "metadata": { "key": 84896, "value": 54 }}"""
val rdd = sc.parallelize(Seq(jsonStr))
val df = sqlContext.read.json(rdd)
答案 1 :(得分:16)
由于在RDD中读取JSON的函数已被弃用 Spark 2.2,这将是另一种选择:
val jsonStr = """{ "metadata": { "key": 84896, "value": 54 }}"""
import spark.implicits._ // spark is your SparkSession object
val df = spark.read.json(Seq(jsonStr).toDS)
答案 2 :(得分:2)
要将JSON字符串列表转换为Spark 2.2中的DataFrame =>
val spark = SparkSession
.builder()
.master("local")
.appName("Test")
.getOrCreate()
var strList = List.empty[String]
var jsonString1 = """{"ID" : "111","NAME":"Arkay","LOC":"Pune"}"""
var jsonString2 = """{"ID" : "222","NAME":"DineshS","LOC":"PCMC"}"""
strList = strList :+ jsonString1
strList = strList :+ jsonString2
val rddData = spark.sparkContext.parallelize(strList)
resultDF = spark.read.json(rddData)
resultDF.show()
结果:
+---+----+-------+
| ID| LOC| NAME|
+---+----+-------+
|111|Pune| Arkay|
|222|PCMC|DineshS|
+---+----+-------+
答案 3 :(得分:1)
这里是一个如何在Java(Spark 2.2+)中将Json字符串转换为Dataframe的示例:
String str1 = "{\"_id\":\"123\",\"ITEM\":\"Item 1\",\"CUSTOMER\":\"Billy\",\"AMOUNT\":285.2}";
String str2 = "{\"_id\":\"124\",\"ITEM\":\"Item 2\",\"CUSTOMER\":\"Sam\",\"AMOUNT\":245.85}";
List<String> jsonList = new ArrayList<>();
jsonList.add(str1);
jsonList.add(str2);
SparkContext sparkContext = new SparkContext(new SparkConf()
.setAppName("myApp").setMaster("local"));
JavaSparkContext javaSparkContext = new JavaSparkContext(sparkContext);
SQLContext sqlContext = new SQLContext(sparkContext);
JavaRDD<String> javaRdd = javaSparkContext.parallelize(jsonList);
Dataset<Row> data = sqlContext.read().json(javaRdd);
data.show();
这是结果:
+------+--------+------+---+
|AMOUNT|CUSTOMER| ITEM|_id|
+------+--------+------+---+
| 285.2| Billy|Item 1|123|
|245.85| Sam|Item 2|124|
+------+--------+------+---+
答案 4 :(得分:1)
simple_json = '{"results":[{"a":1,"b":2,"c":"name"},{"a":2,"b":5,"c":"foo"}]}'
rddjson = sc.parallelize([simple_json])
df = sqlContext.read.json(rddjson)
答案 5 :(得分:0)
您现在可以直接从Dataset [String]中读取json:https://spark.apache.org/docs/latest/sql-data-sources-json.html
val otherPeopleDataset = spark.createDataset(
"""{"name":"Yin","address":{"city":"Columbus","state":"Ohio"}}""" :: Nil)
val otherPeople = spark.read.json(otherPeopleDataset)
otherPeople.show()
// +---------------+----+
// | address|name|
// +---------------+----+
// |[Columbus,Ohio]| Yin|
// +---------------+----+
答案 6 :(得分:0)
在某些情况下会出现一些错误,例如“非法模式”组件:XXX,因此您需要在spark.read中添加带有时间戳的.option,以便更新代码。
val spark = SparkSession
.builder()
.master("local")
.appName("Test")
.getOrCreate()
import spark.implicits._
val jsonStr = """{ "metadata": { "key": 84896, "value": 54 }}"""
val df = spark.read.option("timestampFormat", "yyyy/MM/dd HH:mm:ss ZZ").json(Seq(jsonStr).toDS)
df.show()