总结R中的总计数的一些因素

时间:2016-07-08 16:25:45

标签: r analytics bigdata

对R来说很新!

我对从0到10回答的人进行了一项调查。我想补充一下有多少人< = 6.多少7和8.多少> = 9.

我不得不将问题(Return,Trustworthy ......)变成一个因子来制作x轴上1到10的ggpl。

uk_super_q<-read.csv("SUPR_Q_UK.csv", header = TRUE)

uk_super_q.Return <- as.factor(uk_super_q$Return)
uk_super_q.Trustworthy <- as.factor(uk_super_q$Trustworthy)
uk_super_q.Credible <- as.factor(uk_super_q$Credible)
uk_super_q.Trustworthy <- as.factor(uk_super_q$Trustworthy)
uk_super_q.Clean.and.Simple <- as.factor(uk_super_q$Clean.and.Simple)
uk_super_q.Easy.to.use <- as.factor(uk_super_q$Easy.to.use)
uk_super_q.Attractive <- as.factor(uk_super_q$Attractive)
uk_super_q.NPS <- as.factor(uk_super_q$NPS)

uk_super_q$Return <- as.factor(uk_super_q$Return)
ggplot(uk_super_q, aes(x = Return)) +
  geom_bar() +
  xlab("Return") +
  ylab("Total Count") +
  labs(fill = "Blah") 
table(uk_super_q.Return)

uk_super_q$Easy.Nav <- as.factor(uk_super_q$Easy.Nav)
ggplot(uk_super_q, aes(x = Easy.Nav)) +
  geom_bar() +
  xlab("Easy.Nav") +
  ylab("Total Count") +
  labs(fill = "Blah") 
table(uk_super_q.Trustworthy)

uk_super_q$Credible <- as.factor(uk_super_q$Credible)
ggplot(uk_super_q, aes(x = Credible)) +
  geom_bar() +
  xlab("Credible") +
  ylab("Total Count") +
  labs(fill = "Blah") 
table(uk_super_q.Credible)

uk_super_q$Attractive <- as.factor(uk_super_q$Attractive)
ggplot(uk_super_q, aes(x = Attractive)) +
  geom_bar() +
  xlab("Attractive") +
  ylab("Total Count") +
  labs(fill = "Blah") 
table(uk_super_q.Attractive)

uk_super_q$Trustworthy <- as.factor(uk_super_q$Trustworthy)
ggplot(uk_super_q, aes(x = Trustworthy)) +
  geom_bar() +
  xlab("Trustworthy") +
  ylab("Total Count") +
  labs(fill = "Blah") 
table(uk_super_q.Trustworthy)

uk_super_q$Clean.and.Simple <- as.factor(uk_super_q$Clean.and.Simple)
ggplot(uk_super_q, aes(x = Clean.and.Simple)) +
  geom_bar() +
  xlab("Clean.and.Simple") +
  ylab("Total Count") +
  labs(fill = "Blah") 
table(uk_super_q.Clean.and.Simple)

uk_super_q$Easy.to.use <- as.factor(uk_super_q$Easy.to.use)
ggplot(uk_super_q, aes(x = Easy.to.use)) +
  geom_bar() +
  xlab("Easy.to.use") +
  ylab("Total Count") +
  labs(fill = "Blah") 
table(uk_super_q.Easy.to.use)

uk_super_q$NPS <- as.factor(uk_super_q$NPS)
ggplot(uk_super_q, aes(x = NPS)) +
  geom_bar() +
  xlab("NPS") +
  ylab("Total Count") 

table(uk_super_q.NPS)

1 个答案:

答案 0 :(得分:0)

将逻辑语句应用于data.frame将返回TRUE / FALSE值的矩阵,这些值在R中分别编码为1和0。这样,您就可以使用TRUEsum更有效地计算每列中colSums值的数量。

colSums(uk_super_q <= 6)
colSums(uk_super_q >= 7 & uk_super_q <= 8)
colSums(uk_super_q >= 9)