使用tidyr / dplyr,我有一些因素列我想要Z分数,然后改变平均Z分数,同时保留原始数据以供参考。
我想避免在tidyr / dplyr中使用for循环,因此我收集数据并在单个列上执行计算(Z-score)。但是,我正在努力恢复宽幅格式。
这是一个MWE:
library(dplyr)
library(tidyr)
# Original Data
dfData <- data.frame(
Name = c("Steve","Jwan","Ashley"),
A = c(10,20,12),
B = c(0.2,0.3,0.5)
) %>% tbl_df()
# Gather to Z-score
dfLong <- dfData %>% gather("Factor","Value",A:B) %>%
mutate(FactorZ = paste0("Z_",Factor)) %>%
group_by(Factor) %>%
mutate(ValueZ = (Value - mean(Value,na.rm = TRUE))/sd(Value,na.rm = TRUE))
# Now go wide to do some mutations (eg Z)Avg = (Z_A + Z_B)/2)
# This does not work
dfWide <- dfLong %>%
spread(Factor,Value) %>%
spread(FactorZ,ValueZ)%>%
mutate(Z_Avg = (Z_A+Z_B)/2)
# This is the desired result
dfDesired <- dfData %>% mutate(Z_A = (A - mean(A,na.rm = TRUE))/sd(A,na.rm = TRUE)) %>% mutate(Z_B = (B - mean(B,na.rm = TRUE))/sd(B,na.rm = TRUE)) %>%
mutate(Z_Avg = (Z_A+Z_B)/2)
感谢您的帮助/输入!
答案 0 :(得分:3)
使用dplyr
(版本0.5.0)的另一种方法
library(dplyr)
dfData %>%
mutate_each(funs(Z = scale(.)), -Name) %>%
mutate(Z_Avg = (A_Z+B_Z)/2)
答案 1 :(得分:2)
means <-function(x)mean(x, na.rm=T)
dfWide %>% group_by(Name) %>% summarise_each(funs(means)) %>% mutate(Z_Avg = (Z_A + Z_B)/2)
# A tibble: 3 x 6
Name A B Z_A Z_B Z_Avg
<chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Ashley 12 0.5 -0.3779645 1.0910895 0.3565625
2 Jwan 20 0.3 1.1338934 -0.2182179 0.4578378
3 Steve 10 0.2 -0.7559289 -0.8728716 -0.8144003
答案 2 :(得分:1)
这是一种长格式和宽格式的方法。对于z变换,您可以使用基函数scale
。此外,这种方法包括一个连接,用于组合原始数据帧和包含新值的数据帧。
dfLong <- dfData %>%
gather(Factor, Value, A:B) %>%
group_by(Factor) %>%
mutate(ValueZ = scale(Value))
# Name Factor Value ValueZ
# <fctr> <chr> <dbl> <dbl>
# 1 Steve A 10.0 -0.7559289
# 2 Jwan A 20.0 1.1338934
# 3 Ashley A 12.0 -0.3779645
# 4 Steve B 0.2 -0.8728716
# 5 Jwan B 0.3 -0.2182179
# 6 Ashley B 0.5 1.0910895
dfWide <- dfData %>% inner_join(dfLong %>%
ungroup %>%
select(-Value) %>%
mutate(Factor = paste0("Z_", Factor)) %>%
spread(Factor, ValueZ) %>%
mutate(Z_Avg = (Z_A + Z_B) / 2))
# Name A B Z_A Z_B Z_Avg
# <fctr> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 Steve 10 0.2 -0.7559289 -0.8728716 -0.8144003
# 2 Jwan 20 0.3 1.1338934 -0.2182179 0.4578378
# 3 Ashley 12 0.5 -0.3779645 1.0910895 0.3565625
答案 3 :(得分:0)
我会以宽幅格式完成所有操作。无需在长格式和宽格式之间切换。
dfData %>%
mutate(Z_A=(A-mean(unlist(dfData$A)))/sd(unlist(dfData$A)),
Z_B=(B-mean(unlist(dfData$B)))/sd(unlist(dfData$B))) %>%
mutate(Z_AVG=(Z_A+Z_B)/2)