我遇到以下代码,找到满足Triangle sum属性的三元组。
// Function to count all possible triangles with arr[]
// elements
static int findNumberOfTriangles(int arr[])
{
int n = arr.length;
// Sort the array elements in non-decreasing order
Arrays.sort(arr);
// Initialize count of triangles
int count = 0;
// Fix the first element. We need to run till n-3 as
// the other two elements are selected from arr[i+1...n-1]
for (int i = 0; i < n-2; ++i)
{
// Initialize index of the rightmost third element
int k = i + 2;
// Fix the second element
for (int j = i+1; j < n; ++j)
{
/* Find the rightmost element which is smaller
than the sum of two fixed elements
The important thing to note here is, we use
the previous value of k. If value of arr[i] +
arr[j-1] was greater than arr[k], then arr[i] +
arr[j] must be greater than k, because the
array is sorted. */
while (k < n && arr[i] + arr[j] > arr[k])
++k;
/* Total number of possible triangles that can be
formed with the two fixed elements is k - j - 1.
The two fixed elements are arr[i] and arr[j]. All
elements between arr[j+1] to arr[k-1] can form a
triangle with arr[i] and arr[j]. One is subtracted
from k because k is incremented one extra in above
while loop. k will always be greater than j. If j
becomes equal to k, then above loop will increment
k, because arr[k] + arr[i] is always/ greater than
arr[k] */
count += k - j - 1;
}
}
return count;
}
有人可以更好地解释为什么这个解决方案的时间复杂度是O(n ^ 2)而不是O(n ^ 3)?我的理解是,对于每个i和j,k也会变化。
答案 0 :(得分:2)
上述解决方案的时间复杂度为O(n^2)
,因为您可以看到k
的值在第二个for
循环之前初始化。在第二个for
循环k
的值在while
条件下增加。 while
条件终止后,loop
将运行下一个j
值并且
k
的值与之前在while
循环中终止的值保持一致。
一旦k
的值等于n
,那么在此之后它将不会针对j
的任何值运行。
因此第二个for循环仅从k=i+2
运行到n
。因此,复杂性为O(n^2)
。
答案 1 :(得分:1)
唯一可以执行超过O(n ^ 2)次的语句是最嵌套的++k
语句。
但k
永远不会超过n
,并会重置(到非负数)n-2
次。这证明++k
语句最多执行n(n-2) = O(n^2)
次。