如果我有DataFrame
这样:
pd.DataFrame( {"name" : "John",
"days" : [[1, 3, 5, 7]]
})
给出了这个结构:
days name
0 [1, 3, 5, 7] John
如何将其扩展为以下内容?
days name
0 1 John
1 3 John
2 5 John
3 7 John
答案 0 :(得分:12)
您可以使用df.itertuples
遍历每一行,并使用列表推导将数据重新整形为所需的格式:
import pandas as pd
df = pd.DataFrame( {"name" : ["John", "Eric"],
"days" : [[1, 3, 5, 7], [2,4]]})
result = pd.DataFrame([(d, tup.name) for tup in df.itertuples() for d in tup.days])
print(result)
产量
0 1
0 1 John
1 3 John
2 5 John
3 7 John
4 2 Eric
5 4 Eric
Divakar's solution,using_repeat
,速度最快:
In [48]: %timeit using_repeat(df)
1000 loops, best of 3: 834 µs per loop
In [5]: %timeit using_itertuples(df)
100 loops, best of 3: 3.43 ms per loop
In [7]: %timeit using_apply(df)
1 loop, best of 3: 379 ms per loop
In [8]: %timeit using_append(df)
1 loop, best of 3: 3.59 s per loop
以下是用于上述基准的设置:
import numpy as np
import pandas as pd
N = 10**3
df = pd.DataFrame( {"name" : np.random.choice(list('ABCD'), size=N),
"days" : [np.random.randint(10, size=np.random.randint(5))
for i in range(N)]})
def using_itertuples(df):
return pd.DataFrame([(d, tup.name) for tup in df.itertuples() for d in tup.days])
def using_repeat(df):
lens = [len(item) for item in df['days']]
return pd.DataFrame( {"name" : np.repeat(df['name'].values,lens),
"days" : np.concatenate(df['days'].values)})
def using_apply(df):
return (df.apply(lambda x: pd.Series(x.days), axis=1)
.stack()
.reset_index(level=1, drop=1)
.to_frame('day')
.join(df['name']))
def using_append(df):
df2 = pd.DataFrame(columns = df.columns)
for i,r in df.iterrows():
for e in r.days:
new_r = r.copy()
new_r.days = e
df2 = df2.append(new_r)
return df2
答案 1 :(得分:7)
以下是NumPy的内容 -
lens = [len(item) for item in df['days']]
df_out = pd.DataFrame( {"name" : np.repeat(df['name'].values,lens),
"days" : np.hstack(df['days'])
})
正如@unutbu's solution
np.concatenate(df['days'].values)
所指出的那样会比np.hstack(df['days'])
更快。
它使用循环理解来提取每个'days'
元素的长度,这在运行时必须是最小的。
示例运行 -
>>> df
days name
0 [1, 3, 5, 7] John
1 [2, 4] Eric
>>> lens = [len(item) for item in df['days']]
>>> pd.DataFrame( {"name" : np.repeat(df['name'].values,lens),
... "days" : np.hstack(df['days'])
... })
days name
0 1 John
1 3 John
2 5 John
3 7 John
4 2 Eric
5 4 Eric
答案 2 :(得分:5)
pandas 0.25以来的新功能,您可以使用函数explode()
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.explode.html
import pandas as pd
df = pd.DataFrame( {"name" : "John",
"days" : [[1, 3, 5, 7]]})
print(df.explode('days'))
打印
name days
0 John 1
0 John 3
0 John 5
0 John 7
答案 3 :(得分:4)
'本地'熊猫解决方案 - 我们将列拆分为一系列,然后根据索引重新加入:
import pandas as pd #import
x2 = x.days.apply(lambda x: pd.Series(x)).unstack() #make an unstackeded series, x2
x.drop('days', axis = 1).join(pd.DataFrame(x2.reset_index(level=0, drop=True))) #drop the days column, join to the x2 series
答案 4 :(得分:1)
另一种解决方案:
In [139]: (df.apply(lambda x: pd.Series(x.days), axis=1)
.....: .stack()
.....: .reset_index(level=1, drop=1)
.....: .to_frame('day')
.....: .join(df['name'])
.....: )
Out[139]:
day name
0 1 John
0 3 John
0 5 John
0 7 John
答案 5 :(得分:1)
可能有点像这样:
df2 = pd.DataFrame(columns = df.columns)
for i,r in df.iterrows():
for e in r.days:
new_r = r.copy()
new_r.days = e
df2 = df2.append(new_r)
df2
答案 6 :(得分:0)
感谢Divakar's solution,将其写为包装函数以拉平一列,处理np.nan
和具有多个列的DataFrames
def flatten_column(df, column_name):
repeat_lens = [len(item) if item is not np.nan else 1 for item in df[column_name]]
df_columns = list(df.columns)
df_columns.remove(column_name)
expanded_df = pd.DataFrame(np.repeat(df.drop(column_name, axis=1).values, repeat_lens, axis=0), columns=df_columns)
flat_column_values = np.hstack(df[column_name].values)
expanded_df[column_name] = flat_column_values
expanded_df[column_name].replace('nan', np.nan, inplace=True)
return expanded_df