我有一个Graphframe对象:g和一个RDD对象:候选人:
g = GraphFrame(v,e)
candidates_rdd.collect()
# [Row(source=u'a', target=u'b'),
# Row(source=u'a', target=u'c'),
# Row(source=u'e', target=u'a')]
我想在candidates_rdd中计算从“source”到“target”的路径,并使用graphframe的广度优先搜索生成带有键,值对((源,目标),path_list)的结果rdd,其中path_list是一个列表从源到目标的路径。
示例输出:
(('a','b'),['a-c-b','a-d-e-b']),
(('f','c'),[]),
(('a',d'),['a-b-e-d']
我写了以下函数:
def bfs_(row):
arg1 = "id = '" + row.source + "'"
arg2 = "id = '" + row.target + "'"
return ((row.source, row.target), g.bfs(arg1,arg2).rdd)
results = candidates_rdd.map(bfs_)
我收到了这个错误:
Py4JError: An error occurred while calling o274.__getnewargs__. Trace:
py4j.Py4JException: Method __getnewargs__([]) does not exist
我试图将图表全局化或广播它,但都不起作用。
有人可以帮我这个吗?
非常感谢!!
答案 0 :(得分:1)
TL; DR这是不可能的。
Spark不支持这样的嵌套操作。外循环必须不分配:
>>> [g.bfs(arg1, arg2) for arg1, arg2 in candidates_rdd.collect()]