所以我有一个名为Adat的rdd:Array [String],我想在循环中转换它并得到一个新的RDD,我可以在循环范围之外使用。我试过这个但结果不是我想要的。
val sharedA = {
for {
i <- 0 to shareA.toInt - 1
j <- 0 to shareA.toInt - 1
} yield {
Adat.map(x => (x(1).toInt, i % shareA.toInt, j % shareA.toInt, x(2)))
}
}
上面的代码将SharedA rdd转换为IndexedSeq [RDD [(Int,Int,Int,String)]],当我尝试打印时,结果为:
MapPartitionsRDD[12] at map at planet.scala:99
MapPartitionsRDD[13] at map at planet.scala:99 and so on.
如何将sharedA转换为RDD[(Int, Int, Int, String)]
?
如果我这样做,sharedA具有正确的数据类型,但我不能在范围之外使用它。
for { i <- 0 to shareA.toInt -1
j<-0 to shareA.toInt-1 }
yield {
val sharedA=Adat.map(x => (x(1).toInt,i % shareA.toInt ,j %
shareA.toInt,x(2)))
}
答案 0 :(得分:0)
我不完全理解您的描述,但C++
应该做到这一点:
flatMap
不太常见的方法是在结果上调用val rdd = sc.parallelize(Seq(Array("", "0", "foo"), Array("", "1", "bar")))
val n = 2
val result = rdd.flatMap(xs => for {
i <- 0 to n
j <- 0 to n
} yield (xs(1).toInt, i, j, xs(2)))
result.take(5)
// Array[(Int, Int, Int, String)] =
// Array((0,0,0,foo), (0,0,1,foo), (0,0,2,foo), (0,1,0,foo), (0,1,1,foo))
:
SparkContext.union