以下是csv格式的以下数据集的片段:
quantity revenue time_x transaction_id user_id
1 0 57:57.0 0 0 0
1 0 18:59.0 0 1
我想在user_id为空时删除整行。我怎么在python中这样做?到目前为止,这是我的代码:
activity = pd.read_csv("activity(delimited).csv", delimiter=';', error_bad_lines=False, dtype=object)
impression = pd.read_csv("impression(delimited).csv", delimiter=';', error_bad_lines=False, dtype=object)
click = pd.read_csv("click(delimited).csv", delimiter=';', error_bad_lines=False, dtype=object)
pre_merge = activity.merge(impression, on="user_id", how="outer")
merged = pre_merge.merge(click, on="user_id", how="outer")
merged.to_csv("merged.csv", index=False)
open_merged = pd.read_csv("merged.csv", delimiter=',', error_bad_lines= False, dtype=object)
filtered_merged = open_merged.dropna(axis='columns', how='all')
另外,如何以有效的方式编写代码?
答案 0 :(得分:2)
与熊猫:
import pandas as pd
df = pd.read_csv("path/to/csv/data.csv", delimiter=';', error_bad_lines=False)
df = df[pd.notnull(df.user_id)] # boolean indexing
# Shift user_id to first column
df = df.set_index("user_id")
df = df.reset_index()
df.to_csv("path/to/csv/data.csv", index=False)
括号表示法允许您提供可迭代的布尔值。这称为boolean indexing。在numpy,matlab和R
中使用了类似的概念和语法答案 1 :(得分:0)
不同风格:获取数据,加入然后删除。保持名称空间干净。
activity = pd.read_csv("activity(delimited).csv", delimiter=';', error_bad_lines=False)
impression = pd.read_csv("impression(delimited).csv", delimiter=';', error_bad_lines=False)
pre_merge = activity.merge(impression, on="user_id", how="outer")
del activity, impression
click = pd.read_csv("click(delimited).csv", delimiter=';', error_bad_lines=False)
merged = pre_merge.merge(click, on="user_id", how="outer")
merged.to_csv("merged.csv", index=False)
del click
open_merged = pd.read_csv("merged.csv", error_bad_lines= False)
filtered_merged = open_merged.dropna(axis='columns', how='all')