我试图找出是否可以使用data.asfreq(MonthEnd())
而没有date_range
创建的数据。
我想要实现的目标。我使用以下代码运行csv查询:
import numpy as np
import pandas as pd
data = pd.read_csv("https://www.quandl.com/api/v3/datasets/FRED/GDPC1.csv?api_key=", parse_dates=True)
data.columns = ["period", "integ"]
data['period'] = pd.to_datetime(data['period'], infer_datetime_format=True)
然后我想将频率指定给我的期间'专栏:
tdelta = data.period[1] - data.period[0]
data.period.freq = tdelta
还有一些打印命令:
print(data)
print(data.period.freq)
print(data.dtypes)
返回:
..........
270 1948-07-01 2033.2
271 1948-04-01 2021.9
272 1948-01-01 1989.5
273 1947-10-01 1960.7
274 1947-07-01 1930.3
275 1947-04-01 1932.3
276 1947-01-01 1934.5
[277 rows x 2 columns]
-92 days +00:00:00
period datetime64[ns]
integ float64
dtype: object
我还可以解析原来的日期'通过使其成为索引':
data = pd.read_csv("https://www.quandl.com/api/v3/datasets/FRED/GDPC1.csv?api_key=", parse_dates=True, index_col='DATE')
我想要做的只是将季度数据转换为每月行数。例如:
270 1948-07-01 2033.2
271 1948-06-01 NaN
272 1948-05-01 NaN
273 1948-04-01 2021.9
274 1948-03-01 NaN
275 1948-02-01 NaN
276 1948-01-01 1989.5
......and so on.......
我最终尝试使用ts.asfreq(MonthBegin())
和ts.asfreq(MonthBegin(), method='pad')
来完成此操作。到目前为止没有成功。我有以下错误:
NameError: name 'MonthBegin' is not defined
我的问题是,如果我不使用asfreq
创建框架,我可以使用date_range
吗?以某种方式通过'我的日期列到函数。如果这不是解决方案,还有其他任何简单的方法将季度转换为每月频率吗?
答案 0 :(得分:2)
使用TimeGrouper
:
import pandas as pd
periods = ['1948-07-01', '1948-04-01', '1948-01-01', '1947-10-01',
'1947-07-01', '1947-04-01', '1947-01-01']
integs = [2033.2, 2021.9, 1989.5, 1960.7, 1930.3, 1932.3, 1934.5]
df = pd.DataFrame({'period': pd.to_datetime(periods), 'integ': integs})
df = df.set_index('period')
df = df.groupby(pd.TimeGrouper('MS')).sum().sort_index(ascending=False)
编辑:您也可以使用resample
代替TimeGrouper
:
df.resample('MS').sum().sort_index(ascending=False)