我正在研究一些个人数独游戏并尝试扩展它。
到目前为止,我得到了" Solve"部分工作,使用递归回溯方法,只要它设法解决递归就返回true。
现在我正在尝试构建一个独特的解决方案板生成器,我已经在网上找到了很多关于它如何实现的信息。
然而,我在第一步上苦苦挣扎,这是我的布尔递归回溯算法,它是一种递归算法,可以计算出可能的解决方案。这对于检查我生成的电路板是否唯一是至关重要的。
从更大的角度来说,我已经意识到在实现一些递归排序之前我已经在解决这个问题:如何将布尔递归函数转换为返回某种计数的递归函数(int / long),不失功能?是否有任何指导方针或技术可供遵循?
附件是到目前为止的工作代码。
import java.util.Scanner;
public class Sudoku {
int[][] board;
public Sudoku(){}
public Sudoku(int n){
this.board=new int[n][n];
}
/* Creates an NxN game.board in a two-dimensional array*/
public static int[][] createBoard(int n)
{
int[][] board = new int[n][n];
for (int i=0; i<board.length; i++)
for (int j=0; j<board[i].length; j++)
board[i][j]=0;
return board;
}
/* prints the game.board*/
public static void printBoard(int[][] b)
{
int buffer=(int)Math.sqrt(b.length);
// fitting the bottom line into any size of game.board
String btm=new String(new char[buffer*buffer*3+buffer+1]).replace("\0", "_");
for (int i=0; i<b.length; i++)
{
if (i%buffer==0)
System.out.println(btm);
for (int j=0; j<b[i].length; j++)
{
if (j%buffer==0)
System.out.print("|");
if (b[i][j]==0)
System.out.print(" _ ");
else
System.out.print(" " + b[i][j] + " ");
}
System.out.println("|");
}
System.out.println(btm);
}
/* returns true if a number can be inserted in a row, otherwise returns false. */
public static boolean checkLegalRow(int[][] b, int row, int num)
{
for (int i=0; i<b.length; i++)
{
if (b[row][i]==num)
return false;
}
return true;
}
/* returns true if a number can be inserted in a column, otherwise returns false.*/
public static boolean checkLegalCol(int[][] b, int col, int num)
{
for (int i=0; i<b.length; i++)
{
if (b[i][col]==num)
return false;
}
return true;
}
/*returns true if number can be inserted in its local box.*/
public static boolean checkLegalBox(int[][] b, int row, int col, int num)
{
int buffer=(int)Math.sqrt(b.length);
for (int i=0, adjRow=row-(row%buffer); i<buffer; i++, adjRow++)
{
for (int j=0, adjCol=col-(col%buffer); j<buffer; j++, adjCol++)
{
if (b[adjRow][adjCol]==num)
return false;
}
}
return true;
}
/*allows user input for a sudoku game.board*/
public static void fillInBoardConsole(int[][] b)
{
Scanner sc = new Scanner(System.in);
System.out.print("Please enter a row: ");
int r=sc.nextInt();
System.out.print("Please enter a column: ");
int c=sc.nextInt();
System.out.print("Please enter a number from 1 to "+b.length+": ");
int num=sc.nextInt();
while (num>b.length || num<1)
{
System.out.print("Please enter a number from 1 to "+b.length+": ");
num=sc.nextInt();
}
b[r][c]=num;
sc.close();
}
/* returns true if all the conditions for sudoku legal move are met: there is no
* number on the same row, column, box, and the cell isn't taken*/
public static boolean legalMove(int[][] b, int row, int col, int num)
{
return checkLegalRow(b,row,num) && checkLegalCol(b,col,num) && checkLegalBox(b,row,col,num) && b[row][col]==0;
}
/* returns true if the initial board setting is legal*/
public static boolean initialLegal(int[][] b)
{
int num;
for (int i=0; i<b.length; i++)
{
for (int j=0; j<b[i].length; j++)
{
if (b[i][j]!=0)
{
num=b[i][j];
b[i][j]=0;
if (!(checkLegalRow(b,i,num) && checkLegalCol(b,j,num) && checkLegalBox(b,i,j,num)))
{
b[i][j]=num;
return false;
}
else
b[i][j]=num;
}
}
}
return true;
}
/* using backtrack algorithm and recursion to solve the sudoku*/
public static boolean solveBacktrack(int[][] b, int row, int col)
{
/*If the cell is already taken by a number:
* case 1: if its the last cell (rightmost, lowest) is already taken, sudoku solved
* case 2: if its the rightmost cell not on the if it is the rightmost column but not
* the lowest row, go to the leftmost cell in next row
* case 3: if it's a regular cell, go for the next cell*/
if (b[row][col]!=0)
{
if (col==b.length-1)
if (row==b.length-1)
{
//printgame.board(b); // case 1
return true;
}
else
return solveBacktrack(b,row+1,0); // case 2
else
return solveBacktrack(b,row,col+1); // case 3
}
boolean solved=false;
for (int k=1; k<=b.length; k++) //iterates through all numbers from 1 to N
{
// If a certain number is a legal for a cell - use it
if (legalMove(b,row,col,k))
{
b[row][col]=k;
if (col==b.length-1) // if it's the rightmost column
{
if (row==b.length-1) // and the lowest row - the sudoku is solved
{
//printgame.board(b);
return true;
}
else
solved=solveBacktrack(b,row+1,0); // if its not the lowest row - keep solving for next row
}
else // keep solving for the next cell
solved=solveBacktrack(b,row,col+1);
}
if (solved)
return true;
else //if down the recursion sudoku isn't solved-> remove the number (backtrack)
{
b[row][col]=0;
}
}
return solved;
}
/* public static long solveCountSolutions(int[][]b, int row, int col, long counter)
{
}
*/
public static void main(String[] args)
{
Sudoku game = new Sudoku(9);
game.board[0][2]=5;game.board[0][1]=3; game.board[0][0]=1;
game.board[8][2]=4;game.board[8][4]=3;game.board[8][6]=6;
printBoard(game.board);
if (initialLegal(game.board))
System.out.println(solveBacktrack(game.board,0,0));
else
System.out.println("Illegal setting");
printBoard(game.board);
}
}
答案 0 :(得分:0)
这样的函数可以通过在找到解决方案时不退出递归来实现,而是将该解决方案转储到外部结构(如果你只需要计数,在函数之外的某个地方创建一个计数器但是对它可见,并在找到解决方案后增加它,然后继续搜索,就像你已经走到了死胡同。符合此要求(抽象代码):
static int solutions=0;
bool recursiveSolver(TYPE data) {
TYPE newData;
while (!nextChoice(data)) {
if (solved(data)) {
// return true; not now, we count instead
solutions++;
}
newData=applyNextChoice(data); // for recursion
if (recursiveSolver(newData)) {
return true; // will never hit, but checking is needed for solver to work
}
}
// all choices checked, no solution
return false;
}
在数独的情况下, applyNextChoice()
是“选择下一个号码,放入此单元格”的占位符。 TYPE
是代表不完整解决方案的任何结构的占位符,在您的情况下是int[][] b, int row, int col
的组合。