我在学习工作中实施了基本的近邻搜索。 事实是,基本的numpy实现运行良好,但只是添加' @ jit'装饰器(在Numba中编译),输出是不同的(它由于一些未知的原因它最终复制了一些邻居......)
这是基本算法:
import numpy as np
from numba import jit
@jit(nopython=True)
def knn(p, points, k):
'''Find the k nearest neighbors (brute force) of the point p
in the list points (each row is a point)'''
n = p.size # Lenght of the points
M = points.shape[0] # Number of points
neighbors = np.zeros((k,n))
distances = 1e6*np.ones(k)
for i in xrange(M):
d = 0
pt = points[i, :] # Point to compare
for r in xrange(n): # For each coordinate
aux = p[r] - pt[r]
d += aux * aux
if d < distances[k-1]: # We find a new neighbor
pos = k-1
while pos>0 and d<distances[pos-1]: # Find the position
pos -= 1
pt = points[i, :]
# Insert neighbor and distance:
neighbors[pos+1:, :] = neighbors[pos:-1, :]
neighbors[pos, :] = pt
distances[pos+1:] = distances[pos:-1]
distances[pos] = d
return neighbors, distances
进行测试:
p = np.random.rand(10)
points = np.random.rand(250, 10)
k = 5
neighbors = knn(p, points, k)
没有@jit装饰器,就可以得到正确答案:
In [1]: distances
Out[1]: array([ 0.3933974 , 0.44754336, 0.54548715, 0.55619749, 0.5657846 ])
但Numba汇编给出了奇怪的输出:
Out[2]: distances
Out[2]: array([ 0.3933974 , 0.44754336, 0.54548715, 0.54548715, 0.54548715])
有人可以帮忙吗?我不知道为什么会这样......
谢谢你。
答案 0 :(得分:1)
我认为问题在于,当那些切片重叠而不是没有切片时,Numba正在处理将一个切片写入另一个切片。我不熟悉numpy的内部结构,但也许有一些特殊的逻辑可以处理像这样的易失性内存操作,这些内容在Numba中并不存在。更改以下行,jit装饰器的结果与普通的python版本保持一致:
neighbors[pos+1:, :] = neighbors[pos:-1, :].copy()
...
distances[pos+1:] = distances[pos:-1].copy()