IBL探测BRDF预积分伪像

时间:2016-06-28 07:08:12

标签: opengl

我正在跟随'Moving Frostbite to PBR course notes'在我的OpenGL渲染引擎中实现IBL,但是我在预先集成等式的镜面反射分量方面遇到了一些麻烦。

正如您在下一张图片中看到的那样,问题在预过滤重要性采样的立方体贴图结果的mipmap中可见。

这是正X面mip链: enter image description here

这是负X面mip链: enter image description here

这是我使用的环境贴图(它是以HDR格式动态创建的基于物理的天空纹理): enter image description here

这是环境地图的正面X面mip链: enter image description here

正如你所看到的,正X面上mips的右侧看起来像采样方向类似于mip左侧的采样方向。

另外,在正X面的第二个mip上可以看到那些“点状”形状,我认为这些形状可能是由于样品量较少?

这是我用来预先集成镜面IBL的代码:

float radicalInverse_VdC(uint bits)
{
    bits = (bits << 16u) | (bits >> 16u);
    bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u);
    bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u);
    bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u);
    bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u);
    return float(bits) * 2.3283064365386963e-10; // / 0x100000000
}

//
// Attributed to:
// http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html
// Holger Dammertz.
// 
vec2 Hammersley(uint i, uint N) 
{
    return vec2(float(i)/float(N), radicalInverse_VdC(i));
}

// Based on GGX example in:
// http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
vec3 importanceSampleGGX(vec2 u, float roughness, vec3 N, vec3 upVector, vec3 tangentX, vec3 tangentY)
{
    float a = roughness * roughness;

    float phiH = u.x * PI * 2.0f;
    float cosThetaH = sqrt((1.0f - u.y) / (1.0f + (a * a - 1.0f) * u.y));
    float sinThetaH = sqrt(1.0f - min(1.0f, cosThetaH * cosThetaH));

    vec3 H = vec3(sinThetaH * cos(phiH), sinThetaH * sin(phiH), cosThetaH);
    H = normalize(tangentX * H.x + tangentY * H.y + N * H.z);
    return H;
}

// D(h) for GGX.
// http://graphicrants.blogspot.com/2013/08/specular-brdf-reference.html
float D_GGX(float roughness, float NdotH)
{
    float a = roughness * roughness;
    float a2 = a * a;
    float NdotH2 = NdotH * NdotH;
    float f = 1.0f + (NdotH2 * (a2 - 1.0f));
    return a2 / (f * f);
}

float D_GGX_Divide_Pi(float roughness, float NdotH)
{
    return D_GGX(roughness, NdotH) / PI;
}

vec3 ImportanceSample (vec3 N)
{
    vec3 V = N;

    float size2 = ConvolutionSrcSize * ConvolutionSrcSize; 
    vec3 upVector = abs(N.z) < 0.999 ? vec3(0.0f, 0.0f, 1.0f) : vec3(1.0f, 0.0f, 0.0f);
    vec3 tangentX = normalize(cross(upVector, N));
    vec3 tangentY = cross(N, tangentX);

    vec3 accBrdf = vec3(0.0f);
    float accBrdfWeight = 0.0f;
    float roughness = ConvolutionRoughness;

    uint samplesCount = uint(ConvolutionSampleCount);
    for(uint i = uint(0); i < samplesCount; i++)
    {
        vec2 eta = Hammersley(i, samplesCount);

        vec3 H = importanceSampleGGX(eta, roughness, N, upVector, tangentX, tangentY);
        vec3 L = 2.0f * dot(V, H) * H - V;
        float NdotL = dot(N, L);

        if(NdotL > 0.0f)
        {
            float NdotH = saturate(dot(N, H));
            float LdotH = saturate(dot(L, H));
            float pdf = D_GGX_Divide_Pi(roughness, NdotH) * NdotH / (4.0f * LdotH);

            float omegaS = 1.0f / (samplesCount * pdf);
            float omegaP = 4.0f * PI / (6.0f * size2);

            float mipLevel = roughness == 0.0f ? 0.0f : clamp(0.5f * log2(omegaS / omegaP), 0.0f, ConvolutionMipCount);

            vec4 Li = textureLod(ConvolutionSrc, L, mipLevel);

            accBrdf += Li.rgb * NdotL;
            accBrdfWeight += NdotL;
        }
    }

    if(accBrdfWeight > 0.0f)
        return accBrdf * (1.0f / accBrdfWeight);
    else
        return accBrdf;
}

void main()
{
    // VertexIn.textureCoord is the normal of a sphere I use as mesh to draw to the IBL cubemap
    FragColor = vec4(ImportanceSample(VertexIn.textureCoord), 1.0f);
}

1 个答案:

答案 0 :(得分:0)

发现这是由于立方体面边缘附近的立方体贴图缝问题。启用GL_TEXTURE_CUBE_MAP_SEAMLESS解决了问题。我没有注意到这一点,因为我使用NSight调试着色器,但是NSight并不支持glTexParameteri GL_TEXTURE_CUBE_MAP_SEAMLESS所以我总是禁用它来调试着色器但是我发现了NSight接受glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS)

但仍存在一个问题,mips非常嘈杂,也有大量的样本。有1024个样本,我得到了这个:

enter image description here