使用gensim
,我想计算文档列表中的相似度。这个库非常适合处理我所拥有的数据量。文档都缩减为时间戳,我有一个函数time_similarity
来比较它们。但是,gensim
使用余弦相似度。
我想知道是否有人之前有过这种情况或有不同的解决方案。
答案 0 :(得分:1)
可以通过继承接口SimilarityABC
来完成此操作。我没有找到任何相关的文档,但看起来在定义Word Mover Distance similarity之前已经完成了。这是执行此操作的通用方法。通过专注于您关心的相似性度量,您可以提高效率。
import numpy
from gensim import interfaces
class CustomSimilarity(interfaces.SimilarityABC):
def __init__(self, corpus, custom_similarity, num_best=None, chunksize=256):
self.corpus = corpus
self.custom_similarity = custom_similarity
self.num_best = num_best
self.chunksize = chunksize
self.normalize = False
def get_similarities(self, query):
"""
**Do not use this function directly; use the self[query] syntax instead.**
"""
if isinstance(query, numpy.ndarray):
# Convert document indexes to actual documents.
query = [self.corpus[i] for i in query]
if not isinstance(query[0], list):
query = [query]
n_queries = len(query)
result = []
for qidx in range(n_queries):
qresult = [self.custom_similarity(document, query[qidx]) for document in self.corpus]
qresult = numpy.array(qresult)
result.append(qresult)
if len(result) == 1:
# Only one query.
result = result[0]
else:
result = numpy.array(result)
return result
实现自定义相似性:
def overlap_sim(doc1, doc2):
# similarity defined by the number of common words
return len(set(doc1) & set(doc2))
corpus = [['cat', 'dog'], ['cat', 'bird'], ['dog']]
cs = CustomSimilarity(corpus, overlap_sim, num_best=2)
print(cs[['bird', 'cat', 'frog']])
这会输出[(1, 2.0), (0, 1.0)]
。