我一直试图在java控制台应用程序中实现回溯算法来解决Sudoku。我以前从来没有实现过这个算法,可能只看一些youtube视频是不够的,因为它似乎不像我认为的那样有效。
我手动填充了我在网上找到的实际数据库。但是,它没有经过第一个广场。最初我试图将整个事物嵌套在一个双循环中,但这似乎也不起作用。
我已经正确测试了有效移动方法,所以问题显然不存在。 感谢任何帮助。
public class Sudoku {
public static int[][] createBoard(int n)
{
int[][] board = new int[n][n];
for (int i=0; i<board.length; i++)
for (int j=0; j<board[i].length; j++)
board[i][j]=0;
return board;
}
public static void printBoard(int[][] b)
{
int buffer=(int)Math.sqrt(b.length);
String btm=new String(new char[buffer*buffer*3+buffer+1]).replace("\0", "_"); // fitting for all board size
for (int i=0; i<b.length; i++)
{
if (i%buffer==0)
System.out.println(btm);
for (int j=0; j<b[i].length; j++)
{
if (j%buffer==0)
System.out.print("|");
if (b[i][j]==0)
System.out.print(" _ ");
else
System.out.print(" " + b[i][j] + " ");
}
System.out.println("|");
}
System.out.println(btm);
}
// returns true if a number can be inserted in a row.
public static boolean checkLegalRow(int[][] b, int row, int num)
{
for (int i=0; i<b.length; i++)
{
if (b[row][i]==num)
return false;
}
return true;
}
// returns true if a number can be inserted in a column.
public static boolean checkLegalCol(int[][] b, int col, int num)
{
for (int i=0; i<b.length; i++)
{
if (b[i][col]==num)
return false;
}
return true;
}
//returns true if number can be inserted in its NxN box
public static boolean checkLegalBox(int[][] b, int row, int col, int num)
{
int buffer=(int)Math.sqrt(b.length);
for (int i=0, adjRow=row-(row%buffer); i<buffer; i++, adjRow++)
{
for (int j=0, adjCol=col-(col%buffer); j<buffer; j++, adjCol++)
{
if (b[adjRow][adjCol]==num)
return false;
}
}
return true;
}
public static boolean legalMove(int[][] b, int row, int col, int num)
{
return checkLegalRow(b,row,num) && checkLegalCol(b,col,num) && checkLegalBox(b,row,col,num) && b[row][col]==0;
}
public static void solveBacktrack(int[][] b, int row, int col)
{
for (int k=1; k<=b.length; k++)
{
if (legalMove(b,row,col,k))
{
b[row][col]=k;
if (row==b.length-1 && col==b.length-1)
printBoard(b);
else
{
//printBoard(b);
if (col==b.length-1)
solveBacktrack(b,row+1,0);
else
solveBacktrack(b,row,col+1);
}
}
}
}
public static void main(String[] args)
{
int[][] board=createBoard(9);
board[0][1]=4; board[1][0]=6; board[2][1]=8; board[2][2]=9; board[0][3]=6; board[2][5]=3; board[1][7]=3;
board[1][8]=1; board[3][3]=4;
board[3][0]=2; board[3][2]=1; board[3][4]=5; board[3][7]=7; board[3][8]=8; board[4][1]=5;
board[4][3]=3; board[4][5]=7; board[5][0]=3; board[5][1]=6; board[5][4]=2; board[5][5]=8; board[5][8]=5;
board[6][3]=1; board[6][6]=6; board[6][7]=4; board[7][0]=4; board[7][1]=3; board[7][8]=9; board[8][2]=6;
board[8][5]=9;
printBoard(board);
solveBacktrack(board,0,0);
}
}
答案 0 :(得分:3)
您的检查方法是错误的:您不会检查评论中提到的@stark是否占用了一个单元格。
所以这是checkLegalMove
的修正:
public static boolean checkLegalMove(int[][] b, int row, int col, int num) {
if (b[row][col] != 0) // occupied
return false;
// check row
for (int i = 0; i < b[row].length; i++) {
if (b[row][i] == num)
return false;
}
// check column
for (int i = 0; i < b.length; i++) {
if (b[i][col] == num)
return false;
}
// check box with some integer math
for (int i = row / 3 * 3; i < (row / 3 + 1) * 3; i++) {
if (i == row) // row already checked
continue;
for (int j = col / 3 * 3; j < (col / 3 + 1) * 3; j++) {
if (j == col) // column already checked
continue;
if (b[i][j] == num)
return false;
}
}
return true;
}
solveBacktrack
方法中也存在许多问题,我认为用注释重写事物更容易(没有重置,错误的循环嵌套,最后一个单元格可能已被占用)。
首先我会介绍一个辅助函数来重置东西,所以你知道什么时候你已经解决了数独并且不应该重置值:
private static boolean solved;
public static void solveBacktrack(int[][] b) {
solved = false;
boolean found = false;
// find first free cell and start solving
for (int i = 0; i < 0 && !found; i < b.length; i++) {
for (int j = 0; j < b[i].length; j++) {
if (b[i][j] == 0) {
found = true;
solveBacktrack(b, i, j);
break;
}
}
}
if (!found) // no free cell found, sudoku already solved
solved = true;
}
最后是递归函数:
private static void solveBacktrack(int[][] b, int row, int col) {
for (int k = 1; k <= b.length; k++) {
if (checkLegalMove(b, row, col, k)) {
b[row][col] = k;
// find next free space
int nextRow = row, nextCol = col;
while(nextRow < b.length && b[nextRow][nextCol] != 0) {
if (nextCol + 1 == b[nextRow].length) {
nextCol = 0;
nextRow++;
} else {
nextCol++;
}
}
if (nextRow == b.length) {
solved = true;
break;
}
solveBacktrack(b, nextRow, nextCol);
if (!solved)
b[row][col] = 0; // reset if not solved
else
break;
}
}
}