来自R的e1071包中的tune.svm错误“(下标)逻辑下标太长”

时间:2016-06-24 20:53:30

标签: r svm

我正在尝试将SVM用于多类分类任务。

我有一个名为df的数据集,我将其分为训练集和测试集,其中包含以下代码:

sample <- df[sample(nrow(df), 10000),] # take a random sample of 10,000 from dataset df
sample <- sample %>% arrange(Date) # arrange chronologically
train <- sample[1:8000,] # 80% of the df dataset
test <- sample[8001:10000,] # 20% of the df dataset

这就是训练集的样子:

> str(train)
'data.frame':   8000 obs. of  45 variables:
 $ Date            : Date, format: "2008-01-01" "2008-01-01" "2008-01-02" ...
 $ Weekday         : chr  "Tuesday" "Tuesday" "Wednesday" "Wednesday" ...
 $ Season          : Factor w/ 4 levels "Winter","Spring",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ Weekend         : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Icao.type       : Factor w/ 306 levels "A124","A225",..: 7 29 112 115 107 10 115 115 115 112 ...
 $ Act.description : Factor w/ 389 levels "A300-600F","A330-200F",..: 9 29 161 162 150 13 162 162 162 161 ...
 $ Arr.dep         : Factor w/ 2 levels "A","D": 2 2 1 1 1 1 1 1 1 1 ...
 $ MTOW            : num  77 69 46 21 22 238 21 21 21 46 ...
 $ Icao.wtc        : chr  "Medium" "Medium" "Medium" "Medium" ...
 $ Wind.direc      : int  104 104 82 82 93 93 93 132 132 132 ...
 $ Wind.speed.vec  : int  35 35 57 57 64 64 64 62 62 62 ...
 $ Wind.speed.daily: int  35 35 58 58 65 65 65 63 63 63 ...
 $ Wind.speed.max  : int  60 60 70 70 80 80 80 90 90 90 ...
 $ Wind.speed.min  : int  20 20 40 40 50 50 50 50 50 50 ...
 $ Wind.gust.max   : int  100 100 120 120 130 130 130 140 140 140 ...
 $ Temp.daily      : int  24 24 -5 -5 4 4 4 34 34 34 ...
 $ Temp.min        : int  -7 -7 -25 -25 -13 -13 -13 11 11 11 ...
 $ Temp.max        : int  50 50 16 16 13 13 13 55 55 55 ...
 $ Temp.10.min     : int  -11 -11 -32 -32 -18 -18 -18 9 9 9 ...
 $ Sun.dur         : int  7 7 65 65 19 19 19 0 0 0 ...
 $ Sun.dur.prct    : int  9 9 83 83 24 24 24 0 0 0 ...
 $ Radiation       : int  173 173 390 390 213 213 213 108 108 108 ...
 $ Precip.dur      : int  0 0 0 0 0 0 0 5 5 5 ...
 $ Precip.daily    : int  0 0 0 0 -1 -1 -1 2 2 2 ...
 $ Precip.max      : int  0 0 0 0 -1 -1 -1 2 2 2 ...
 $ Sea.press.daily : int  10259 10259 10206 10206 10080 10080 10080 10063 10063 10063 ...
 $ Sea.press.max   : int  10276 10276 10248 10248 10132 10132 10132 10086 10086 10086 ...
 $ Sea.press.min   : int  10250 10250 10141 10141 10058 10058 10058 10001 10001 10001 ...
 $ Visibility.min  : int  1 1 40 40 43 43 43 58 58 58 ...
 $ Visibility.max  : int  59 59 75 75 66 66 66 65 65 65 ...
 $ Cloud.daily     : int  7 7 3 3 8 8 8 8 8 8 ...
 $ Humidity.daily  : int  96 96 86 86 77 77 77 82 82 82 ...
 $ Humidity.max    : int  99 99 92 92 92 92 92 90 90 90 ...
 $ Humidity.min    : int  91 91 74 74 71 71 71 76 76 76 ...
 $ Evapo           : int  2 2 4 4 2 2 2 1 1 1 ...
 $ Wind.discrete   : chr  "South East" "South East" "North East" "North East" ...
 $ Vmc.imc         : chr  "Unknown" "Unknown" "Unknown" "Unknown" ...
 $ Beaufort        : num  3 3 4 4 4 4 4 4 4 4 ...
 $ Main.A          : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Main.B          : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Main.K          : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Main.O          : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Main.P          : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Main.Z          : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Runway          : Factor w/ 13 levels "04","06","09",..: 3 8 2 2 2 6 2 6 6 6 ...

然后,我尝试使用以下代码调整SVM参数:

library(e1071)
tuned <- tune.svm(Runway ~ ., data = train, gamma = 10 ^ (-6:-1), cost = 10 ^ (-1:1))

虽然此代码过去有效,但它现在给出了以下错误:

Error in newdata[, object$scaled, drop = FALSE] : 
  (subscript) logical subscript too long

我能想到的唯一改变的是数据集train中的行,因为运行第一个代码块意味着采用10,000个随机样本(来自数据集df,包含350万行)。

有谁知道我为什么会这样做?

2 个答案:

答案 0 :(得分:1)

我认识到如果没有一个好的可重复的例子,这个问题很难解决。

但是,我已经找到了解决我问题的方法,并希望将此发布给任何可能在将来寻找此问题的人。

运行相同的代码,但使用列车集中的选定列:

tuned <- tune.svm(Runway ~ ., data = train[,c(1:2, 45)], gamma = 10 ^ (-6:-1), cost = 10 ^ (-1:1))

绝对没问题。我继续添加更多功能,直到错误再现。我发现功能Vmc.imcIcao.wtc导致了错误,并且它们都是chr个功能。使用以下代码:

train$Vmc.imc <- as.factor(train$Vmc.imc)
train$Icao.wtc <- as.factor(train$Icao.wtc)

将它们更改为因子,然后重新运行

 tuned <- tune.svm(Runway ~ ., data = train, gamma = 10 ^ (-6:-1), cost = 10 ^ (-1:1))

解决了我的问题。

我不知道为什么其他chr功能(例如WeekdayWind.discrete)不会导致同样的问题。如果有人知道答案,我很乐意找到答案。

答案 1 :(得分:0)

类似于此线程here。我补充说,如果你忽略了所有角色特征的因素,你在尝试运行 predict 时也会收到这个错误。