我正在尝试使用NLTK Word Net Lemmatizer找到一种更快速的方法来对列表中的单词进行词典化(名为 text )。显然,这是我整个程序中最耗时的步骤(使用cProfiler查找相同的内容)。
以下是我试图优化速度的代码 -
def lemmed(text):
l = len(text)
i = 0
wnl = WordNetLemmatizer()
while (i<l):
text[i] = wnl.lemmatize(text[i])
i = i + 1
return text
使用lemmatizer会使我的表现降低20倍。任何帮助将不胜感激。
答案 0 :(得分:3)
如果您有多个核心要备用,请尝试使用multiprocessing
库:
from nltk import WordNetLemmatizer
from multiprocessing import Pool
def lemmed(text, cores=6): # tweak cores as needed
with Pool(processes=cores) as pool:
wnl = WordNetLemmatizer()
result = pool.map(wnl.lemmatize, text)
return result
sample_text = ['tests', 'friends', 'hello'] * (10 ** 6)
lemmed_text = lemmed(sample_text)
assert len(sample_text) == len(lemmed_text) == (10 ** 6) * 3
print(lemmed_text[:3])
# => ['test', 'friend', 'hello']