我有一个带kerasRegressor的scikit-learn pipline:
estimators = [
('standardize', StandardScaler()),
('mlp', KerasRegressor(build_fn=baseline_model, nb_epoch=5, batch_size=1000, verbose=1))
]
pipeline = Pipeline(estimators)
之后,训练pipline,我试图使用joblib保存到磁盘......
joblib.dump(pipeline, filename , compress=9)
但是我收到了一个错误:
RuntimeError:超出最大递归深度
如何将管道保存到磁盘?
答案 0 :(得分:12)
我遇到了同样的问题,因为没有直接的方法可以做到这一点。这是一个适合我的黑客。我将管道保存为两个文件。第一个文件存储了sklearn管道的pickle对象,第二个文件用于存储Keras模型:
...
from keras.models import load_model
from sklearn.externals import joblib
...
pipeline = Pipeline([
('scaler', StandardScaler()),
('estimator', KerasRegressor(build_model))
])
pipeline.fit(X_train, y_train)
# Save the Keras model first:
pipeline.named_steps['estimator'].model.save('keras_model.h5')
# This hack allows us to save the sklearn pipeline:
pipeline.named_steps['estimator'].model = None
# Finally, save the pipeline:
joblib.dump(pipeline, 'sklearn_pipeline.pkl')
del pipeline
以下是模型的加载方式:
# Load the pipeline first:
pipeline = joblib.load('sklearn_pipeline.pkl')
# Then, load the Keras model:
pipeline.named_steps['estimator'].model = load_model('keras_model.h5')
y_pred = pipeline.predict(X_test)
答案 1 :(得分:0)
Keras与开箱即用的泡菜不兼容。如果您愿意猴子打补丁,可以修复它:https://github.com/tensorflow/tensorflow/pull/39609#issuecomment-683370566。
您还可以使用SciKeras库,该库可以为您完成此任务,并且可以代替command_stdout="$(mycommand --flag 2>/tmp/stderr.$$)"
command_stderr="$(</tmp/stderr.$$)"
rm /tmp/stderr.$$
:https://github.com/adriangb/scikeras
披露:我是SciKeras以及该PR的作者。