深度学习caffe - 数据分类导致NaN

时间:2016-06-22 15:10:48

标签: nan deep-learning caffe pycaffe

我有一个训练有素的caffe网用于2类问题,并想检查一个数据的净输出。所以我运行这样的分类:

proto = 'deploy.prototxt'
model = 'snapshot_iter_4000.caffemodel'
net = caffe.Net(proto, model, caffe.TEST)

# get image from database to variable "image"
out = net.forward_all(data=image)
print out
>> {'prob': array([[ nan,  nan],
    [ nan,  nan]], dtype=float32)}

我查看了训练输出;我看到准确性永远不会变得更好(它总是在0.48左右)。 我检查了所有输入lmdb,其中没有包含NaN的数据。此外,我总是使用相同的数据集训练多个分类器,并且它们按预期工作。

有没有人遇到过这个问题? caffe是否存在一些数值不稳定性?

如果有人可以帮助我,我会很高兴的! 谢谢=)

这是我用于所有网络的solver.prototxt:

test_iter:100
test_interval:100
base_lr: 0.03 
display:50
max_iter: 6000 
lr_policy: "step" 
gamma: 0.1 
momentum:0.9
weight_decay:0.0005
stepsize: 2000 
snapshot:2000
snapshot_prefix:"snapshot"
solver_mode:GPU
net:"train_val.prototxt"
solver_type:SGD

和网络架构(即AlexNet):

layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 70
  }
  data_param {
    source: "./dataset/train_db"
    batch_size: 300
    backend: LMDB
  }
}
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TEST
  }
  transform_param {
    crop_size: 70
  }
  data_param {
    source: "./dataset/val_db"
    batch_size: 300
    backend: LMDB
  }
}

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 96
    kernel_size: 11
    stride: 4
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "norm1"
  type: "LRN"
  bottom: "conv1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "norm1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "pool1"
  top: "conv2"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "norm2"
  type: "LRN"
  bottom: "conv2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "norm2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool2"
  top: "conv3"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv3"
  top: "conv3"
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu4"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "conv5"
  type: "Convolution"
  bottom: "conv4"
  top: "conv5"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  convolution_param {
    num_output: 256
    pad: 1
    kernel_size: 3
    group: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu5"
  type: "ReLU"
  bottom: "conv5"
  top: "conv5"
}
layer {
  name: "pool5"
  type: "Pooling"
  bottom: "conv5"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool5"
  top: "fc6"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu6"
  type: "ReLU"
  bottom: "fc6"
  top: "fc6"
}
layer {
  name: "drop6"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  inner_product_param {
    num_output: 4096
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "relu7"
  type: "ReLU"
  bottom: "fc7"
  top: "fc7"
}
layer {
  name: "drop7"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc8"
  type: "InnerProduct"
  bottom: "fc7"
  top: "fc8"
  param {
    lr_mult: 1.0
    decay_mult: 1.0
  }
  param {
    lr_mult: 2.0
    decay_mult: 0.0
  }
  inner_product_param {
    num_output: 2
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 0.0
    }
  }
}


layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "fc8"
  bottom: "label"
  top: "loss"
}
layer {
  name: "accuracy"
  type: "Accuracy"
  bottom: "fc8"
  bottom: "label"
  top: "accuracy"
  include {
    phase: TEST
  }
}

1 个答案:

答案 0 :(得分:1)

<强>更新

根据我的回答中的反馈意见,问题导致NaN的原因是:

top: "data"图层中Data的比例为[0,255],而初始学习率为base_lr: 0.03,这对于该输入数据比例来说太大,从而导致分歧。

top: "data"层中的Data规范化为[0,1]解决了问题:

transform_param {
    mirror: true
    scale: 0.00390625
    crop_size: 70
}

NAN更可能表示您的训练偏差,这意味着您的训练没有收敛(这表示您的2级分类的训练准确度为0.48)。由于您的输入lmdb之前已经有效,原因很可能是您使用了太大的学习率,这会在训练期间过度更新模型参数,从而导致NAN的数量。 所以你可以尝试一个较小的学习率,例如小10倍,直到你的训练工作。
此外, @Shai in the comment above提供的主题也非常好。